Оксидные сегнетоэлектрики при высоком давлении: структурный аспект

С.Е.Кичанов, С.Г.Джабаров, Д.П.Козленко, Б.Н.Савенко, Е.В.Лукин, А. И. Мамедов, Р. З. Мехдиева

Объединенный институт ядерных исследований, Дубна, Россия Институт физики НАН Азербайджана, Баку, Азербайджан

Оксидные сегнетоэлектрики при высоком давлении: структурный аспект

Конденсаторы и вариконды

Мультиферроики

FerroRAM

едования в ком давле

Оксидные сегнетоэлектрики при высоком давлении

Поведение сегнетоэлектрической фазы при высоком давлении

Изменение кристаллических параметров при высоком давлении

Индуцированные давлением новые структурные фазы оксидных материалов

Построение Р-Т фазовых диаграмм оксидных сегнетоэлектриков

Оксидные сегнетоэлектрики при высоком давлении: методы исследований Рентгеновская дифракция при высоком давлении

Источник синхротронного излучения DORIS-III

Пресс высокого давления МАХ-80

Источник синхротронного излучения третьего поколения PETRA-III

Камера высокого давления с алмазными наковальнями

Оксидные сегнетоэлектрики при высоком давлении: методы исследований

Дифрактометр ДН-6

Дифрактометр ДН-12

Оксидные сегнетоэлектрики при высоком давлении: титанат свинца

Оксидные сегнетоэлектрики при высоком давлении: титанат свинца

Оксидные сегнетоэлектрики при высоком давлении: ниобат натрия

NaNbO₃ 4d 4c01

S.K.Mishra, N.Choudhury, S.L.Chaplot, P.S.Krishna, R.Mittal, Phys. Rev. B, (2007) 76, 024110

U (913 K) \rightarrow T2 (848 K) \rightarrow T1 (793 K) \rightarrow S (753 K) \rightarrow R (633 K) \rightarrow P (173 K) \rightarrow N

Оксидные сегнетоэлектрики при высоком давлении: фазовая диаграмма ниобата натрия

Оксидные сегнетоэлектрики при высоком давлении: фазовый переход в ниобате натрия

Оксидные сегнетоэлектрики при высоком давлении: вольфрамата магния свинца Pb₂MgWO₆

Влияние давления на «родственные» структурные элементы: октаэдры WO₆ и MgO₆

Сравнение фазового перехода параэлектрикантисегнетоэлектрик индуцированный высоким давлением или температурой

Оксидные сегнетоэлектрики при высоком давлении: фазовый переход в Pb₂MgWO₆ при температуре

Оксидные сегнетоэлектрики при высоком давлении: фазовый переход в Pb₂MgWO₆ при давлении

Оксидные сегнетоэлектрики при высоком давлении: Ba₄Sm₂Fe₂Nb₈O₃₀ и Ba₄Gd₂Fe₂Nb₈O₃₀

$Ba_4Sm_2Fe_2Nb_8O_{30}T_c=436 K$ $Ba_4Gd_2Fe_2Nb_8O_{30}T_c=423 K$

Варьирование среднего радиуса катионов

Влияние включений катионов на сегнетоэлектрические и магнитные свойства

E. Castel, PhD thesis, University of Bordeaux 1, 2009

Оксидные сегнетоэлектрики при высоком давлении: Ba₄Sm₂Fe₂Nb₈O₃₀ и Ba₄Gd₂Fe₂Nb₈O₃₀

P4/mbm

Pba2

J. Appl. Phys. 101, 104114 (2007); doi: 10.1063/1.2205720

Спасибо за Внимание