Resonant inelastic X-ray scattering in the study of transition metal oxides.

V. Yushankhai

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

in collaboration with

L. Syurakshina *(LIT JINR, Dubna)* P. Fulde *(MPI PKS, Dresden)* J. van den Brink and L. Hozoi *(IFW, Dresden)*

Outline

- General view on *RIXS processes and electronic excitations* in strongly correlated 3*d*-, 4*d*, and 5-*d* electron systems (transition metal oxides);
 - Theory of RIXS : *basic formulation*;
 - Correlated electron systems : layered high-T_c cuprates , RVO₃ with nearly cubic perovskite structure and iridium oxides with pyrochlore structure A₂Ir₂O₇;
- Local and collective excitations in these materials detected by RIXS and their model description;
- Application of ab initio quantum-chemical cluster calculations of local electronic properties measured by RIXS;

General view on RIXS process

RIXS process creates a valence excitation with momentum $\hbar \mathbf{k}' - \hbar \mathbf{k}$ and energy $\hbar \omega_{\mathbf{k}} - \hbar \omega_{\mathbf{k}'}$, with resolution $\Delta E \approx 100 \text{ meV}$

Understanding the excitation spectrum of a system is the understanding the system.

Electronic excitations accessible by RIXS in TM oxides.

Further we focus on local d-d, propagating excitons and magnons

Theory of RIXS in multiorbital correlated electronic systems

$$\mathcal{I}^{\epsilon'\epsilon}(\mathbf{k}',\mathbf{k};\,\omega_{fg},\Omega_{res}) = \sum_{f} \mid \mathcal{F}_{fg}^{\epsilon'\epsilon}(z_{\mathbf{k}}) \mid^{2} \delta(\hbar\omega_{\mathbf{k}} + E_{g} - \hbar\omega_{\mathbf{k}'} - E_{f});$$

In the *dipole* limit, the total scattering amplitude is ($\mathbf{D}_{\mathbf{k}} = \sum_{j}^{N_{e}} \mathbf{r}_{j} \exp(i\mathbf{k} \cdot \mathbf{r}_{j})$): $\mathcal{F}_{fg}^{\epsilon'\epsilon} \sim \langle \Phi_{f}^{N} \mid \left(\boldsymbol{\epsilon'}^{*} \cdot \mathbf{D}_{\mathbf{k'}}^{\dagger} \right) \mathcal{G}(z_{\mathbf{k}}) \left(\boldsymbol{\epsilon} \cdot \mathbf{D}_{\mathbf{k}} \right) \mid \Phi_{g}^{N} \rangle$

intermediate-state propagator $\mathcal{G}(z_{\mathbf{k}}) = \sum_{n} \frac{|\Phi_{n}^{N+1}, \underline{c}\rangle \langle \Phi_{n}^{N+1}, \underline{c}|}{z_{\mathbf{k}} - (E_{n} - E_{g})}$ $z_{\mathbf{k}} = \hbar \omega_{\mathbf{k}} + i\Gamma,$

Transition Metal elements

	10								2000		
21	22	23	24	25	26	27	28	29	30		
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn		(3d)
44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089		()
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc		
39	40	41	42	43	44	45	46	47	48		
Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	j.	(4 <i>d</i>)
88.9058	91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411	<u> </u>	()
Yitrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Dhadium	Palladium	Silver	Cadmium	<u> </u>	
71	72	73	74	75	76	77	78	79	80		
Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	V	
174.967	178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59	, , , , , , , , , , , , , , , , , , ,	(5 <i>d</i>)
Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury		

Nearly cubic perovskites ABO₃ A= Ba, Sr, La, R; B= Ti, V, Co, Mn, ...- transition metal (TM) ions of iron (3d) group;

(i) $BaTiO_3$: FE (ii) $La_{1-x}Ca_xMnO_3$: CMR; etc.

3d orbitals of the TM ion in cubic (O_h) crystal field

Crystal - field dd excitations in undoped cuprates

L. Hozoi, L. Siurakshina, P. Fulde & J. van den Brink "Ab Initio quantum-chemical cluster calculations of Cu 3d orbital energies in copper oxides" PHYS. REV. B 84 (2011) 235125

(with the use of MOLPRO 2010)

Moretti-Sala et al., New J. of Physics 13 (2011) 043026

Energy and symmetry of dd excitations in undoped layered cuprates measured by Cu *L*₃ resonant inelastic x-ray scattering

(ADRESS beamline at PSI using SAXES spectrometer)

Relative energy $\Delta(e_g)$ as function of the distance h between the Cu and apical ligands in different cuprates

In undoped cuprates with tetragonally split e_g orbitals, the orbital inter-site fluctuations are quenched and the spin exchange dynamic is allowed only.

$$\mathcal{H}_{eff} = \mathcal{H}_J = J \sum_{ij} \mathbf{S}_i \mathbf{S}_j$$

L. Ament et al., PRL **103** (2009) – *theory;* L. Braicovich et al., PRL **104** (2010) – *first observation of single-magnon RIXS in* La₂CuO₄

Low-energy superexchange spin-orbital model for RVO₃

A. Oles et al., PRB **75** (2007) 184434;
$$\widehat{J} \sim 50 \ meV$$

$$\mathcal{H}_{eff} = \mathcal{H}_{spin-orb} = \widehat{J} \sum_{\langle ij \rangle | | (\gamma)} \left[(\underline{\vec{S}_i \cdot \vec{S}_j} + 1) \underline{\hat{J}_{ij}^{(\gamma)}} + \hat{\mathcal{K}}_{ij}^{(\gamma)} \right],$$
$$\widehat{J}_{ij}^{(\gamma)}, \hat{\mathcal{K}}_{ij}^{(\gamma)} = \mathcal{C}_{1,2} \left(\vec{\tau}_i \cdot \vec{\tau}_j + \frac{1}{4} n_i n_j \right)^{(\gamma)} \pm \mathcal{C}_3 \left(\vec{\tau}_i \otimes \vec{\tau}_j + \frac{1}{4} n_i n_j \right)^{(\gamma)}$$

Model parameters \Leftarrow *ab intio* quantum - chemical calculations for a small <u>lattice fragment (cluster)</u> of TM oxides with **experimental** structural lattice parameters.

(b) 77K < T < 200K $(P2_t/b)$

 (γ)

Orbital and spin ordering patterns in YVO₃

V. Yushankhai & L. Siurakshina Int. J. Modern Phys., 27 (2013) 1350185

> "Ab initio analysis of crystal-field multiplets of V³⁺ ion in YVO₃ for **RIXS** "

d-d Excitations in $A_2Ir_2O_7$ (A = Y, Eu, Pr)

L. Hozoi, H. Gretarsson, V. Yushankhai, et al., PHYS. REV. B **89**, (2014) 115111

Compound	E ₁ (Exp)	E ₁ (Calc)	E ₂ (Exp)	E ₂ (Calc)	E ₃ (Exp)	E ₃ (Calc)	λ (SOC)	Δ (CEF)
Y ₂ Ir ₂ O ₇	0.53 eV	0.58 eV	0.98 eV	0.94 eV	3.87 eV	3.48-4.84 eV	0.43 eV	0.56 eV
Eu ₂ Ir ₂ O ₇	0.59 eV	0.60 eV	0.95 eV	0.91 eV	3.68 eV	3.39-4.72 eV	0.46 eV	0.46 eV
Pr ₂ Ir ₂ O ₇	0.52 eV		0.98 eV		3.40 eV		0.42 eV	0.57 eV

Magnetic excitation spectra of Sr₂IrO₄ probed by RIXS: Links to cuprate superconductors

J. Kim, et al., PRL, 108 (2012)

F.Wang & T.Senthil PRL, **106** (2011)

A doped Sr₂IrO₄ – a novel platform for high-T_c superconductivity ?

Conclusion

 Large scattering phase, i.e., the range of energies and momenta transferred in the scattering event, makes RIXS a powerful tool in measuring spin and orbital excitations in solids.

 The *ab initio quantum-chemical cluster calculations* for the local electronic structure of complex transition-metal oxides combined with complementary *theoretical analysis* of the local *d-d* excitation spectra accessible by RIXS may *become a routine procedure;* Orbital waves in LaMnO₃ (e_g¹)

<mark>1|||</mark>

$$\vec{T}(i) = \frac{1}{2} \sum_{\gamma\gamma's} c^{\dagger}_{\gamma s}(i) \vec{\sigma}_{\gamma\gamma'} c_{\gamma's}(i),$$

$$\begin{pmatrix} \widetilde{T}_{z}(i) \\ \widetilde{T}_{x}(i) \end{pmatrix} = \begin{pmatrix} \cos\theta(i) & \sin\theta(i) \\ -\sin\theta(i) & \cos\theta(i) \end{pmatrix} \begin{pmatrix} T_{z}(i) \\ T_{x}(i) \end{pmatrix}$$

$$\tilde{T}_{z}(i) \sim \frac{1}{2} - a^{\dagger}(i)a(i),$$

$$\tilde{T}_{x}(i) \sim \frac{1}{2} \{a^{\dagger}(i) + a(i)\}$$

Theoretical results for the dispersion relation of the orbital wave in $LaMnO_3$.

(E. Saitoh *et al*, Nature **410** (2001) 180.)

