

Мезоструктура и фрактальные свойства прозрачных стекол

на основе диоксида циркония

Н.Н. Губанова, Г.П. Копица, К.В. Ездакова ПИЯФ НИЦ КИ, Гатчина, Россия

> В.К. Иванов, А.Е. Баранчиков ИОНХ РАН, Москва, Россия

A. Феоктистов, V. Pipich Jülich Centre for Neutron Science, Garching, Germany

V. Ryukhtin

Nuclear Physics Institute, Prague, Czech Republic

B. Angelov

Institute of Macromolecular Chemistry, Prague, Czech Republic

Стекла на основе ZrO₂

Практическое применение:

- Фотохромные устройства
- Каталитические системы
- Оптические химические сенсоры
- Матрицы для термостойких люминесцентных композитов и нелинейных оптических устройств.

Методы синтеза:

- Спекание
- Плавление
- Золь-гель технология

 Разработка методов синтеза новых прозрачных пористых стекол на основе диоксида циркония, без введения в реакционную смесь алкоголятов кремния.

 Анализ процессов формирования прозрачных пористых стекол на основе диоксида циркония и изучение влияния условий синтеза на их микро и мезоструктуру. Схема синтеза циркониевых стекол с азотной предысторией

Таблица 1. Условные обозначения образцов стекол, приготовленных с использованием HNO₃

	Соотношение Zr:H2O, моль		
	1:10.58	1:5.29	1:2.65
	(14% масс.)	(7.5% масс.)	(4% масс.)
Синтез приТ=20°С	4V(H ₂ O)	2V(H ₂ O)	1V(H ₂ O)
Синтез при Т=0°С	4V(H ₂ O)-ice	2V(H ₂ O)-ice	1V(H ₂ O)-ice

Фотография стекол на основе ZrO₂

Светопропускание в видимой области спектра

Коэффициент преломления для $1V(H_2O)$: $n_d = 1.783 0.006$

Методы анализа

Методы анализа

Рентгеновская компьютерная микротомография

Рентгеновские плоскостные срезы образца в трех плоскостях 1V(H₂O)

Методы анализа

Растровая электронная микроскопия

1V(H₂O)-ice

4V(H₂O)-ice

2V(H₂O)-ice

Малоугловое рассеяние

Рассеивающая система	Показатель степени Δ
Массовый (объемный) фрактал	$1 \le D_{\rm m} < 3$
Поверхностный фрактал	$3 < 6 - D_{\rm S} \le 4$
Неоднородность с гладкой поверхностью	4
«Диффузная» поверхность	4 + 2 β , где 0 $\leq \beta \leq 1$
Сильно сплюснутая частица	2
Сильно вытянутая частица	1

УМУРН, МУРН и МУРР

Зависимости дифференциального сечения dΣ(q)/dΩ МУРН образцами прозрачных стекол на основе диоксида циркония, от q.

$$\frac{d\Sigma(q)}{d\Omega} = \sum_{i=1}^{m} \left(G_i \cdot \exp\left(-\frac{q^2 R_{gi}^2}{3}\right) + B_i \exp\left(-\frac{q^2 R_{g(i-1)}^2}{3}\right) \left[\frac{\left(erf(qR_{gi}/\sqrt{6})\right)^3}{q}\right]^{n_i} \right) + I_{inc}$$

МУРР

Зависимости интенсивности $I_{S}(q)$ МУРР образцами стекол на основе диоксида циркония, синтезированных с разным количеством воды (круг – 4% масс., квадрат – 7.5% масс. и треугольник – 14% масс.) при температурах 20 (а) и 0 (b) 0°С, от переданного импульса q.

$$I_{s}(q) = G_{0} \cdot \exp\left(-\frac{q^{2}r_{g}^{2}}{3}\right) + B_{0}\left[\frac{(erf(qr_{g}/\sqrt{6}))^{3}}{q}\right]^{n}$$

Модель структуры стекол на основе ZrO₂ с азотной предысторией

Агрегаты с диффузной поверхностью Кластеры, являющиеся объемными или поверхностными фракталами

Частицы с гладкой поверхностью

Зависимости характерного размера d_c первичных частиц от количества добавляемой при синтезе воды.

Зависимости верхней границы самоподобия d_{c1} и показателя степени n_1 для фрактальных кластеров 2-го структурного уровня от количества добавляемой при синтезе воды.

Зависимости характерного размера *d*_{c3} и показателя степени β крупномасштабных агрегатов З-го структурного уровня от количества добавляемой при синтезе воды.

Таблица 2. Условные обозначения образцов стекол, приготовленных с использованием CH₃COOH

	Соотношение Zr:H2O, моль			
	1:4.1	1:3.3	1:3	
	(5.23% масс.)	(4.17% масс.)	(3.79% масс.)	
Синтез приТ=20°С	1.4V(H ₂ O)	1.1V(H ₂ O)	1V(H ₂ O)	
Синтез при Т=0°С	1.4V(H ₂ O)-ice	1.1V(H ₂ O)-ice	1V(H ₂ O)-ice	

Фотография стекол на основе ZrO₂

Методы анализа

• XRD – рентгенофазовый анализ:

Все образцы – рентгеноаморфны;

- ТЕМ просвечивающая электронная микроскопия;
- ВЕТ низкотемпературная адсорбция азота:

для образцов 1V(H₂O) и 1.1V(H₂O)-ice $S_{yg} = 204$ и 229 м²/г, соответсвенно

- Светопропускание: $T \approx 80\%$ для образца $1V(H_2O)$
- МУРР

МУРР

Импульсные зависимости интенсивности $I_{\rm S}(q)$ МУРР образцами стекол на основе ZrO₂, синтезированных с разным количеством воды при T = 20 °C.

При q < 0.15 Å⁻¹: $\frac{d\Sigma(q)}{d\Omega} = \sum_{i=1}^{m} (G_i \cdot \exp\left(-\frac{q^2 R_{gi}^2}{3}\right) + B_i \exp\left(-\frac{q^2 R_{g(i-1)}^2}{3}\right) \left[\frac{(erf(qR_{gi}/\sqrt{6}))^3}{q}\right]^{n_i})$ При q > 0.15 Å⁻¹: $I_S(q) = AF(q)^2 S(q)$

$$AF(q)^{2} = G_{1} \cdot \exp(-\frac{q^{2}r_{g1}^{2}}{3}) + B_{1}\left[\frac{(erf(qr_{g1}/\sqrt{6}))^{3}}{q}\right]^{n}$$

$$S(q) = \frac{1}{(1+k\Theta)}$$
 — структурный фактор

где Θ – форм-фактор для структурных сферических корреляций масштаба ξ:

$$\Theta = 3 \cdot \frac{(\sin(q\xi) - q\xi \cdot \cos(q\xi))}{q\xi^3}$$

Фактор упаковки: 0 < к < 5.92 (к < 3 — слабые корреляции)

Радиус корреляций:
$$\xi=2\pi/q_{
m max}$$

Модель структуры стекол на основе ZrO₂ с азотной предысторией

Агрегаты с развитой фрактальной поверхностью

d > 140 нм

Объемно фрактальные кластеры

26 – 28 нм

Частицы с гладкой поверхностью ~1 нм

Зависимости характерного размера d_{c1} первичных частиц от количества добавляемой при синтезе воды.

Зависимости верхней границы самоподобия d_{c2} и фрактальной размерности D_V кластеров 2-го структурного уровня от количества добавляемой при синтезе воды.

Зависимости фрактальной размерности D_S поверхности крупномасштабных агрегатов 3-го структурного уровня от количества добавляемой при синтезе воды.

• Впервые, с помощью золь-гель метода, синтезированы образцы монолитных прозрачных стекол на основе диоксида циркония.

• Проведено исследование микро- и мезоструктуры, в том числе фрактальной структуры, прозрачных стекол на основе диоксида циркония методами: БЭТ, РФА, МКТ, РЭМ, УМУРН, МУРН и МУРР. Комплексный анализ полученных данных показал, что:

- 1. Все образцы являются рентгеноаморфными и характеризуются высокой удельной поверхностью до 250 м²/г.
- 2. Все полученные стекла представляют собой системы с трехуровневой иерархической организацией структуры.
- 3. Условия синтеза: используемая кислота, концентрация H₂O в исходном растворе и температура синтеза оказывают существенное влияние на структурные характеристики стекол.

Спасибо за внимание !