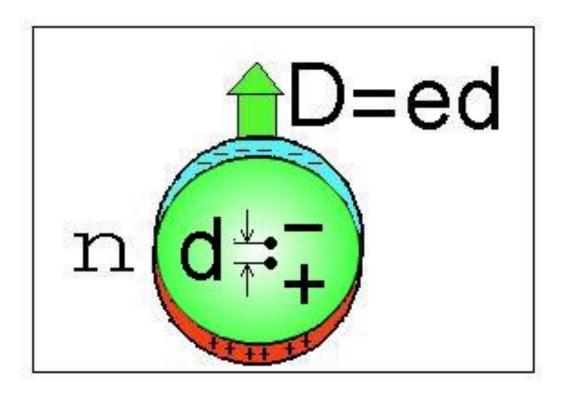
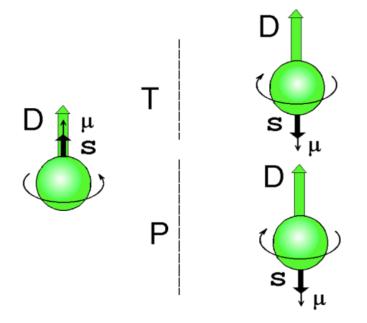
## Эксперимент по поиску ЭДМ нейтрона кристаллдифракционным методом


В.В. Воронин<sup>1, 2, 3</sup>, <u>Ю.П. Брагинец<sup>1, 2</sup></u>, Е.О. Вежлев<sup>1, 2</sup>, И.А. Кузнецов<sup>1</sup>, Е.Г. Лапин<sup>1</sup>, М.В. Ласица<sup>1, 2</sup>, С.Ю. Семенихин<sup>1</sup>, В.В. Федоров<sup>1, 2, 3</sup>

<sup>1</sup> Петербургский институт ядерной физики им. Б.П. Константинова

<sup>2</sup> Санкт-Петербургский государственный политехнический университет


<sup>3</sup> Санкт-Петербургский государственный университет

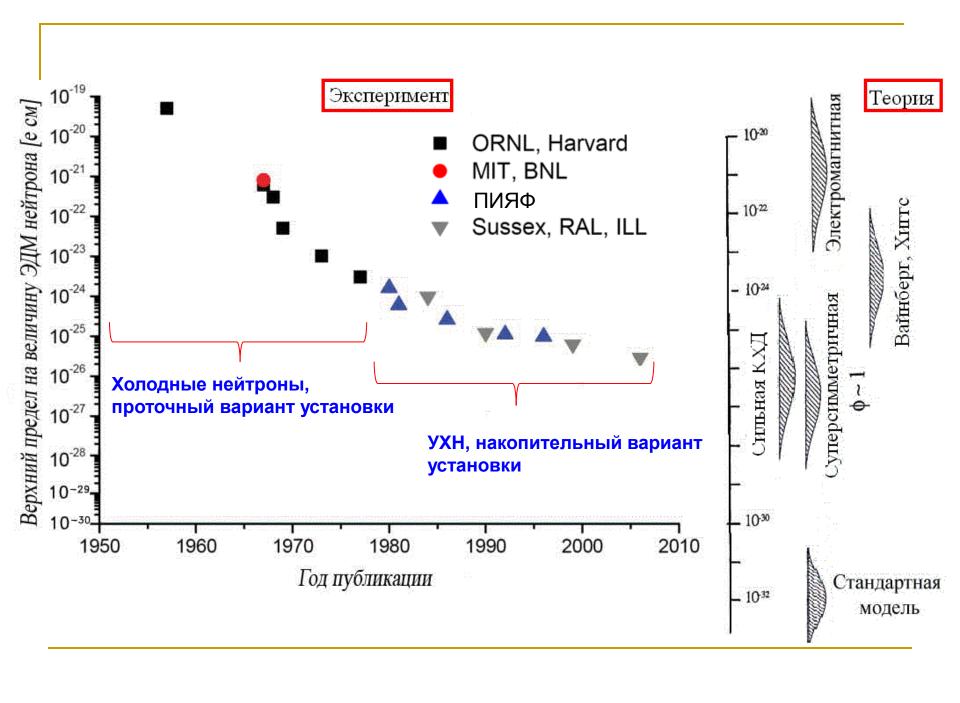
## ЭДМ нейтрона



- е заряд электрона,
- **d** вектор, соединяющий центры шариков и направленный от положительного заряда к отрицательному.

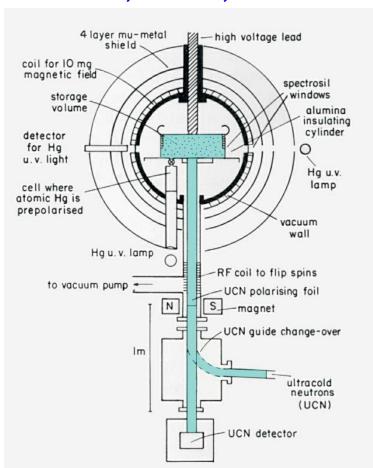
#### ЭДМ и нарушение СР-симметрии



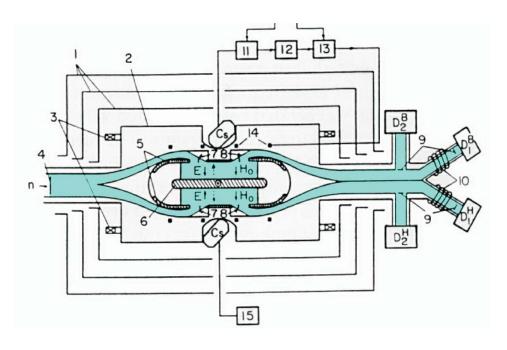

Не нулевой ЭДМ требует одновременное нарушение временной (T) и пространственной (P) инвариантностей, а в силу СРТ-теоремы и СР-инвариантности.

### Барионная асимметрия Вселенной

- 1967 г. А.Д. Сахаров ввел три условия возникновения Вселенной:
- существует взаимодействие, не сохраняющее барионное число
- существует взаимодействие, нарушающее СРинвариантность
- отсутствует термодинамическое равновесие при расширении


#### Начало поиска ЭДМ нейтрона

- 1950 г. Парселл и Рамзей анализируя работы о нейтронэлектронному взаимодействию предположили существования ЭДМ у нейтрона порядка 3⋅10<sup>-18</sup> e⋅cм.
- **1951** г. Смит, Парселл и Рамзей первый эксперимент D < 5·10<sup>-20</sup> е·см.
- 1957 г. группа Ву обнаружили нарушение пространственной четности предсказанное Ли и Янгом.
- **1964** г. непосредственное обнаружение нарушения СР-симметрии в распаде нейтрального К-мезона.
- 2004 г. Belle, BaBar обнаружение нарушения СР-симметрии в распаде нейтрального В-мезона.




#### Эксперименты по поиску ЭДМ на УХН

#### ILL, Sussex, RAL



#### ФРИП



**1995** г. D < 9,7·10<sup>-26</sup> e·cm,  $\tau$  ~ 100 c, E=15 κB/cm.

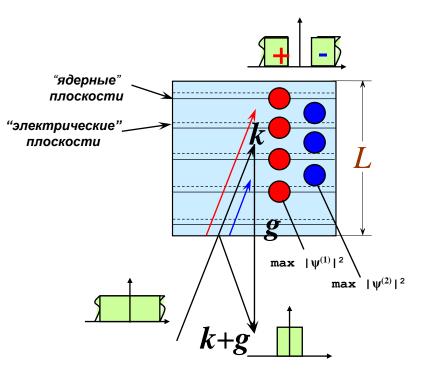
**2006 г. D < 2,9·10<sup>-26</sup> e·cm**,  $\tau \sim 150$  c, E=10 кB/cm.

### Чувствительность к ЭДМ

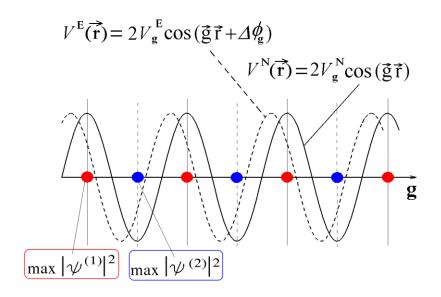
$$\sigma^{-1} \sim E \tau \sqrt{N}$$

#### Для **УХН**

 $E \sim 10 \text{ kB/cm}$  $\tau \sim 1000 \text{ c}$ 


Максимальная чувствительность  $E\tau \sim 10^7 (B \cdot c)/cm$  Достигнутая  $E\tau \approx 10^6 (B \cdot c)/cm$ 

Для кристалл-дифракционного метода

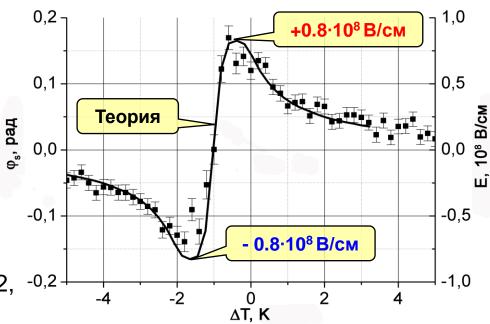

 $E \sim (10^8 - 10^9)$  В/см,  $\tau_a \sim 0.01$  с (поглощение)

Чувствительность метода к ЭДМ  $E\tau \sim 10^7 (B \cdot c)/cm$ .

#### Кристалл-дифракционный метод



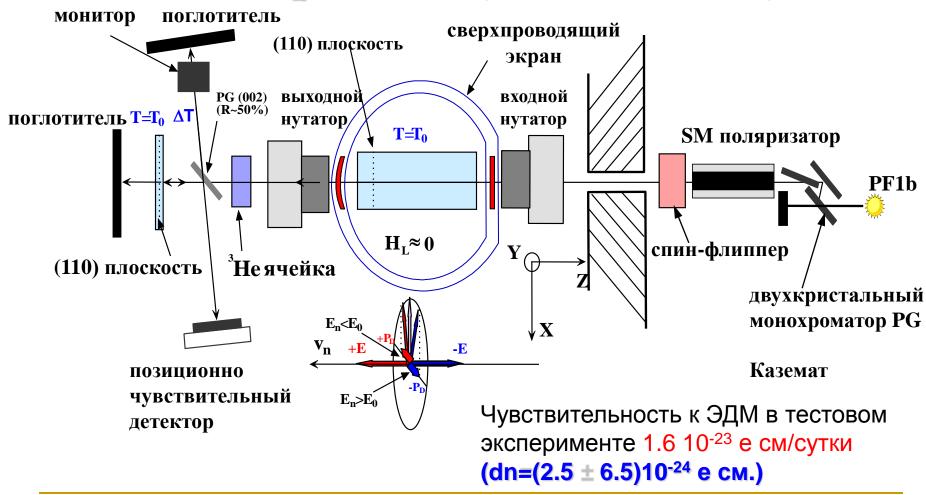
Проходя через нецентросимметричный кристалл нейтрон оказывается под действием сильных  $10^8$ - $10^9$  В/см межплоскостных электрических полей противоположного знака  $\pm$  E.




#### Основная идея эксперимента



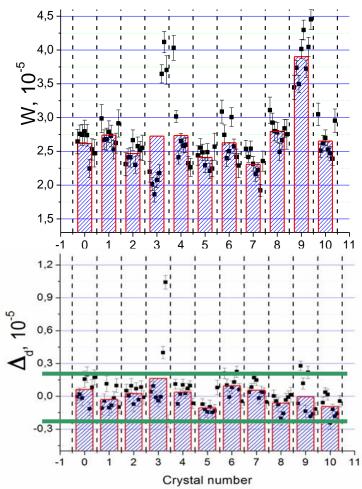
$$\tilde{d} = d_0 (1 + \alpha_T \Delta T)$$


где  $\alpha_T$  – коэффициент теплового расширения кварца в направлении перпендикулярном отражающим плоскостям.



Отметим, что при угле дифракции  $\pi/2$ ,

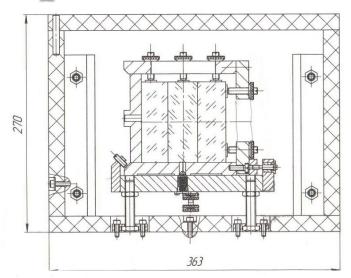
$$E||v_n H_s \sim [E \ v_n] \approx 0$$

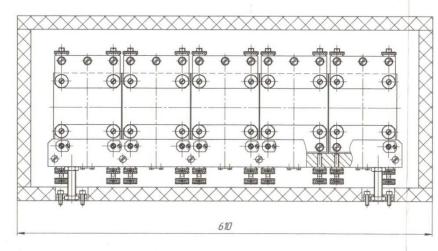

# Тестовый кристалл-дифракционный эксперимент (ПИЯФ, ILL)



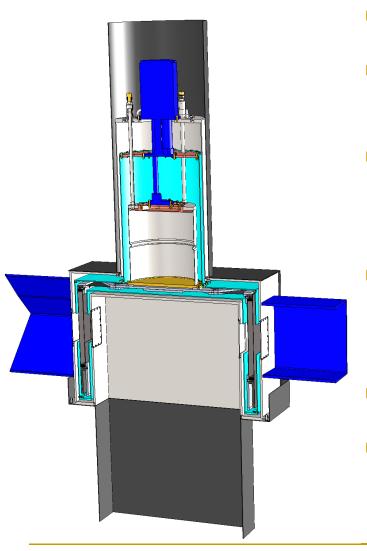
#### Тестирование кристаллов кварца




Отобраны кристаллы суммарным размером 105x100x500 мм<sup>3</sup> (15 кристаллов 35x100x100 мм<sup>3)</sup> и разбросом межплоскостного расстояния  $\Delta d/d \sim 4 \cdot 10^{-6}$ 



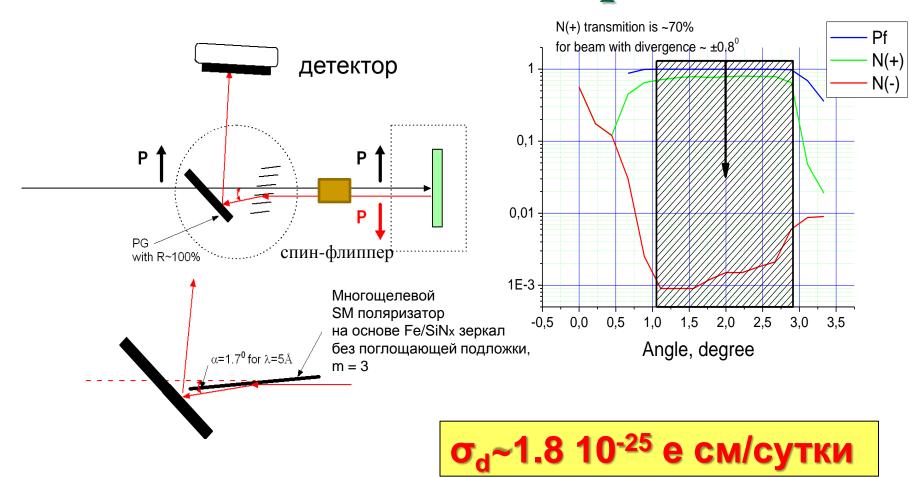

### Кристаллодержатель




Водяной термостат стабилизация температуры ~ 0,01°C



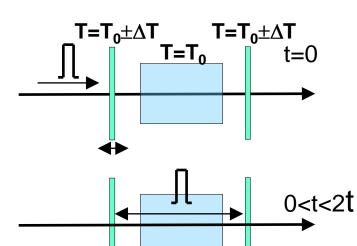



#### CRYOPAD для ЭДМ эксперимента



- Внутренний диаметр *642х256 мм*
- Размер входного и выходного окна -120x120 мм²
- Входное и выходное окна плоскопараллельны друг другу с точностью не хуже ~ 10<sup>-3</sup> рад
- Точность и однородность поворота поляризации по всей апертуре пучка должны быть не хуже ~ 10⁻³ рад
- Остаточные магнитные поля  $\sim 10^{-4} \Gamma c$
- Время стабилизации 10<sup>-5</sup> Гс / час

 $\sigma_{\rm d}$ ~3 10<sup>-25</sup> е см/сутки

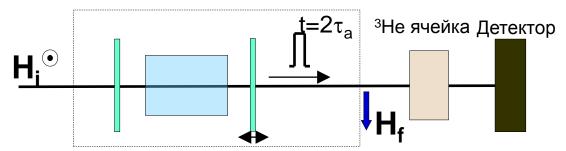

# Многощелевой SM поляризатор на основе Fe/SiN<sub>x</sub> зеркал



## Параметры нецентросимметричных кристаллов

| Crystal                            | Symmetry group                   | hkl | d, (Å) | E <sub>g</sub> ,<br>10 <sup>8</sup> V/cm | τ <sub>a</sub> ,<br>ms | E <sub>g</sub> τ <sub>a</sub> ,<br>(kV·s/cm) |
|------------------------------------|----------------------------------|-----|--------|------------------------------------------|------------------------|----------------------------------------------|
| α-quartz                           | 32(D <sup>6</sup> <sub>3</sub> ) | 111 | 2.236  | 2.3                                      | 1                      | 230                                          |
| (SiO <sub>2</sub> )                |                                  | 110 | 2.457  | 2.0                                      |                        | 200                                          |
| Bi <sub>12</sub> SiO <sub>20</sub> | 123                              | 433 | 1.75   | 4.3                                      | 4                      | 1720                                         |
|                                    |                                  | 444 | 1.46   | 4.65                                     |                        | 1860                                         |
| Bi <sub>12</sub> GeO <sub>20</sub> | 123                              | 433 | 1.74   | 4.65                                     | 1                      | 465                                          |
|                                    |                                  | 444 | 1.46   | 4.8                                      |                        | 480                                          |
| PbO                                | P c a 21                         | 002 | 2.94   | 10.4                                     | 1                      | 1040                                         |
|                                    |                                  | 004 | 1.47   | 10                                       |                        | 1000                                         |
| BeO                                | 6mm                              | 011 | 2.06   | 5.4                                      | 7                      | 3700                                         |
|                                    |                                  | 201 | 1.13   | 6.5                                      |                        | 4500                                         |

### Накопительный вариант установки для импульсного источника нейтронов




Брэгговская ширина

$$\Delta v_B = \frac{4\hbar F_g d}{mV_c} \xrightarrow{(444)Bi_{12}SiO_{20}} 0.6 \text{ cm/c}$$

Время прохождения импульса через кристалл и обратно

$$\tau_r \sim 2L/v_n \xrightarrow{L=15cM} \sim 0.2Mc$$



Ускорение кристалла

$$a_c = \Delta v_B / \tau_r \sim 30 \text{ m/c} = 3g$$

 $\sigma_{\rm d}$ ~2 10<sup>-26</sup> е см/сутки

для ESS

 $\tau_a$  – время поглощения нейтронов в кристалле

### Заключение

- Использование кристаллов кварца суммарным размером 105х100х500 мм<sup>3</sup> и CRYOPAD с плоскопараллельными входным и выходным окном позволяет достичь чувствительности ~3 10<sup>-25</sup> е см/сутки
- Использование многощелевого SM поляризатора на основе Fe/SiN<sub>x</sub> зеркал без поглощающей подложки ~1.8·10<sup>-25</sup> е см/сутки
- Дальнейшее усовершенствование метода может быть связанно с использованием других нецентросимметричных кристаллов и накопительного варианта установки позволит достичь чувствительности на уровне ~2 10-26 е см/сутки