

Совещание по использованию рассеянию нейтронов и синхротронного излучения в конденсированных средах 27-31 октября 2014, Старый Петергоф, Санкт-Петербург, Россия

Рефлектометры на реакторе ПИК. Концепция

ЭКСПЕРТНАЯ ГРУППА

В.И. Боднарчук

Объединенный институт ядерных исследований, Дубна, Московская обл., Россия

А.А. Воробьев

Institut Laue-Langevin, Grenoble, France Uppsala University, Uppsala, Sweden

К. Жерненков

Commissariat à l'Energie Atomique, Institut Nanosciences et Cryogénie, Grenoble, France

А.И. Иоффе

Jülich Centre for Neutron Science, Garching, Germany

Е.А. Кравцов

Институт физики металлов УрО РАН, Екатеринбург, Россия

Н.К. Плешанов

Петербургский институт ядерной физики НИЦ КИ, Гатчина, Россия

Б.П. Топерверг

Lehrstuhl für Festkörperphysik/Experimentalphysik, Ruhr-Universität Bochum, Germany Петербургский институт ядерной физики НИЦ КИ, Гатчина, Россия

ЭКСПЕРТНАЯ ГРУППА

В.И. Боднарчук

Объединенный институт ядерных исследований, Дубна, Московская обл., Россия

А.А. Воробьев

Institut Laue-Langevin, Grenoble, France Uppsala University, Uppsala, Sweden

К. Жерненков

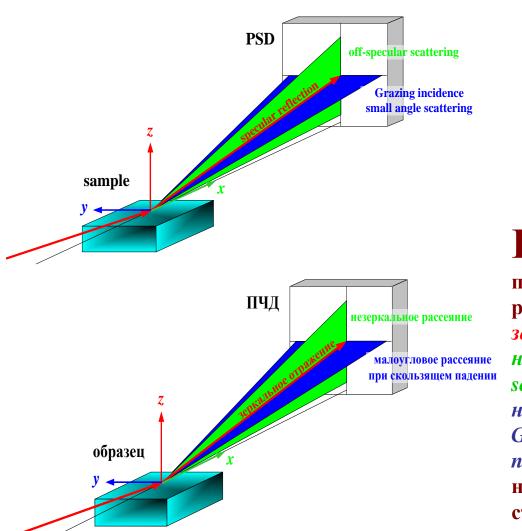
Commissariat à l'Energie Atomique, Institut Nanosciences et Cryogénie, Grenoble, France

А.И. Иоффе

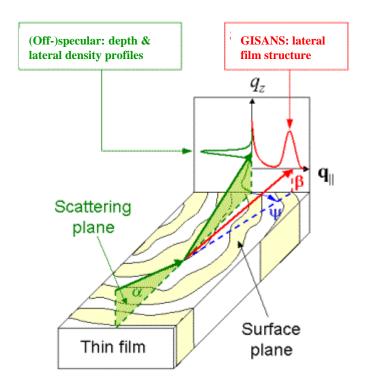
Jülich Centre for Neutron Science, Garching, Germany

Е.А. Кравцов

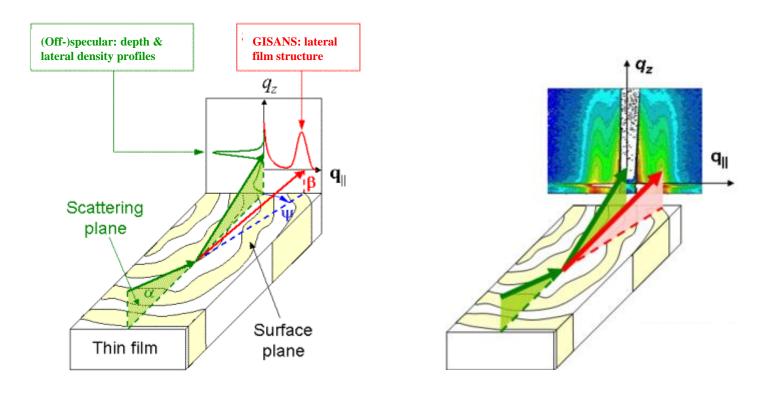
Институт физики металлов УрО РАН, Екатеринбург, Россия

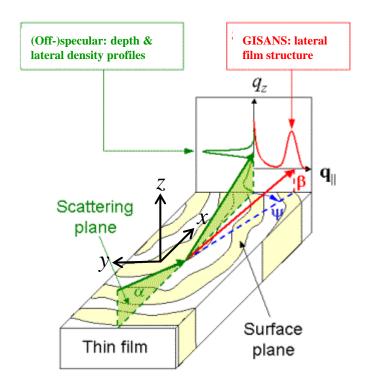

Н.К. Плешанов

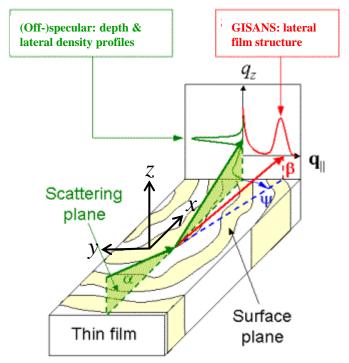
Петербургский институт ядерной физики НИЦ КИ, Гатчина, Россия


Б.П. Топерверг

Lehrstuhl für Festkörperphysik/Experimentalphysik, Ruhr-Universität Bochum, Germany Петербургский институт ядерной физики НИЦ КИ, Гатчина, Россия


Результатом работы экспертной группы стали общие рекомендации по созданию рефлектометрического комплекса из нескольких специализированных взаимодополняющих приборов.


Взаимодействие падающих нейтронов с поверхностью образца приводит к рассеянию по трем основным каналам: зеркальное отражение (specular reflection), незеркальное рассеяние (off-specular/diffuse scattering), малоугловое рассеяние нейтронов при скользящем падении = MYPHCП = GISANS (grazing incidence small angle neutron scattering). Чтобы упростить рисунок, показано рассеяние только в соответствующих центральных плоскостях.


Если исходить только из названия *малоугловое рассеяние при скользящем падении (GISANS*), то под этим термином можно понимать все каналы рассеяния.

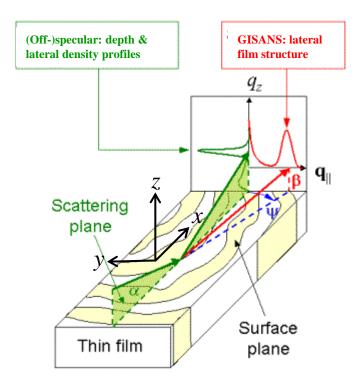
Если исходить из истории и практики, термин GISANS (малоугловое рассеяние при скользящем падении) используется для рассеяния, дополнительного к зеркальному и незеркальному рассеянию. При измерениях GISANS более интенсивные каналы зеркального и незеркального рассеяния часто просто перекрывают поглотителем, для того чтобы разгрузить детектор и снизить электронный шум.

Интенсивность зеркального отражения <u>в основном</u> задается усредненным по латеральным координатам $(x \ u \ y)$ эффективным потенциалом V(z). Сечения незеркального и малоуглового рассеяния при скользящем падении определяются также особенностями латеральной структуры <u>в основном</u>, соответственно, вдоль оси x и y. Полные измерения производятся с помощью позиционно-чувствительного детектора (ПЧД)

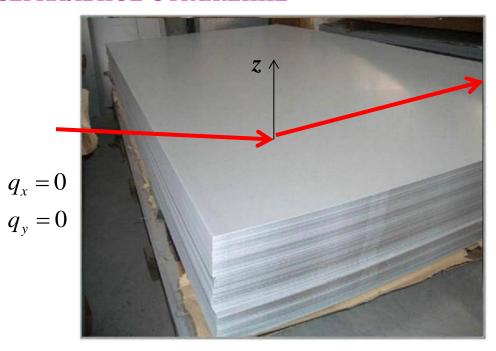
◆ При упругом рассеянии изменение волнового вектора связано с соответствующей q-компонентой фурье-разложения потенциала (плотности длины рассеяния), т.е. с соответствующими особенностями структуры

$$\boldsymbol{k}_1 = (k\cos\alpha, 0, -k\sin\alpha)$$

 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$


$$q = k_2 - k_1 = (q_x, q_y, q_z) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha)$$

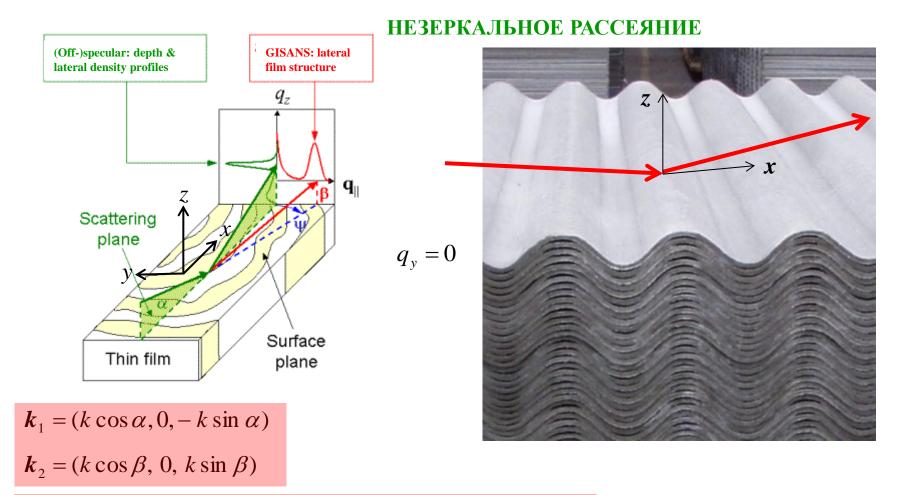
 α - угол скольжения (угол между \mathbf{k}_1 и отражающей поверхностью),


 β - угол между k_2 и отражающей поверхностью,

 ψ - угол между k_2 и плоскостью зеркального отражения,

оси x и y - на поверхности образца, причем $k_{1,y}$ =0, ось z нормальна к поверхности образца

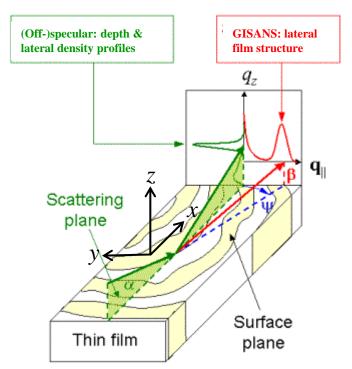
ЗЕРКАЛЬНОЕ ОТРАЖЕНИЕ

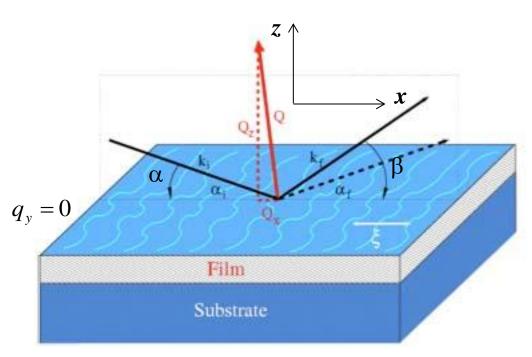


$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

$$\mathbf{k}_2 = (k \cos \alpha, 0, k \sin \alpha)$$

$$q = k_2 - k_1 = (0, 0, q_z) = k(0, 0, 2 \sin \alpha)$$


- ◆ поверхность и все слои под ней идеально плоские и гладкие --> только зеркальное отражение (в «точку» на детекторе)
- lacktriangledark коэффициент отражения $R(q_z)$ --> плотность длины рассеяния ho(z)
- ◆ разрешение метода не ухудшится, а интенсивность увеличится при увеличении горизонтальной ширины и горизонтальной расходимости пучка --> щелевая геометрия

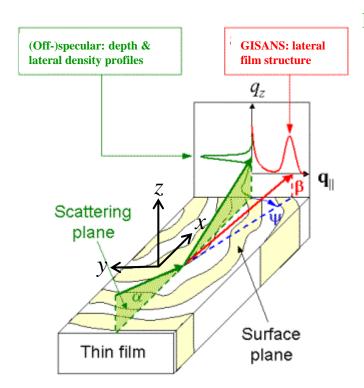

- lacktriangle плотность длины рассеяния зависит только от координат z и x --> зеркальное отражение и незеркальное рассеяние (вертикальная линия на детекторе)
- ◆ разрешение метода не ухудшится, а интенсивность увеличится при увеличении горизонтальной ширины и горизонтальной расходимости пучка --> щелевая геометрия

 $q = k_2 - k_1 = (q_x, 0, q_z) = k(\cos \beta - \cos \alpha, 0, \sin \beta + \sin \alpha)$

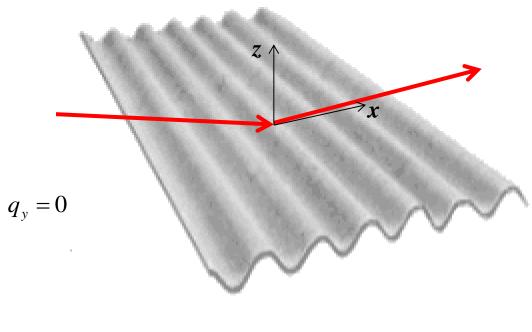
• суммирование интенсивностей --> карты интенсивностей незерк. рассеяния $I(q_x,q_z)$ --> $\rho(x,z)$

НЕЗЕРКАЛЬНОЕ РАССЕЯНИЕ

$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$


$$\mathbf{k}_2 = (k \cos \beta, 0, k \sin \beta)$$

(приближение малых углов)

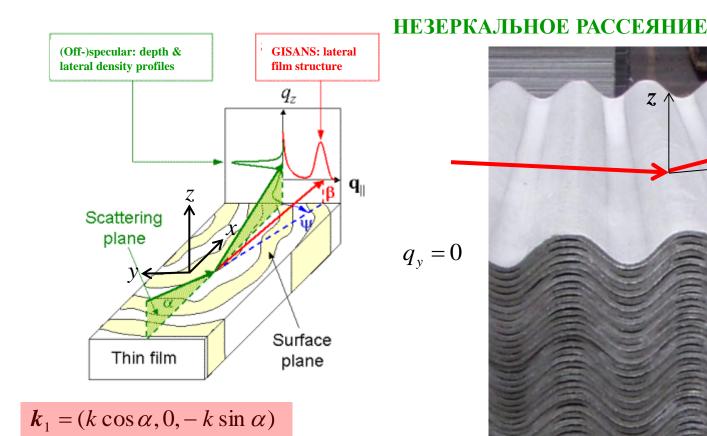

$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, 0, q_{z}) = (k \cos \beta - k \cos \alpha, 0, k \sin \beta + k \sin \alpha) \cong$$

$$\cong [-\frac{1}{2}k(\beta^{2} - \alpha^{2}), 0, k(\beta + \alpha)] = [-\frac{1}{2}(\beta - \alpha)q_{z}, 0, q_{z}]$$

$$q_z \cong k(\alpha + \beta)$$

НЕЗЕРКАЛЬНОЕ РАССЕЯНИЕ

$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

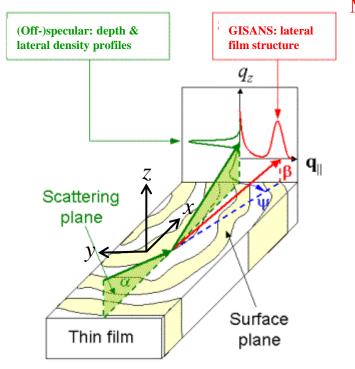

$$\mathbf{k}_2 = (k \cos \beta, 0, k \sin \beta)$$

(приближение малых углов)

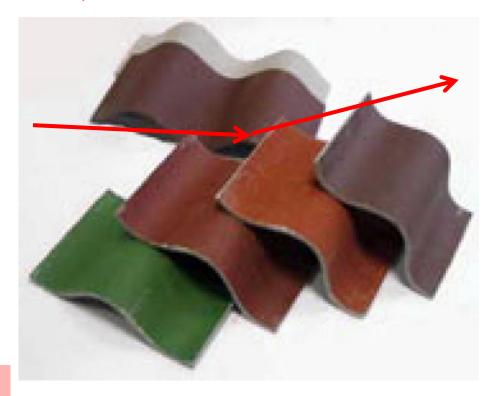
$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, 0, q_{z}) = (k \cos \beta - k \cos \alpha, 0, k \sin \beta + k \sin \alpha) \cong$$

$$\cong [-\frac{1}{2}k(\beta^{2} - \alpha^{2}), 0, k(\beta + \alpha)] = [-\frac{1}{2}(\beta - \alpha)q_{z}, 0, q_{z}]$$

$$q_z \cong k(\alpha + \beta)$$


(приближение малых углов)

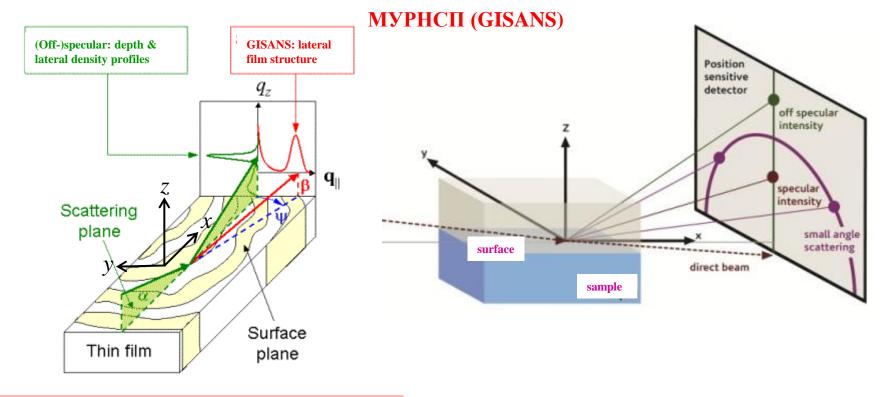
$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, 0, q_{z}) = (k \cos \beta - k \cos \alpha, 0, k \sin \beta + k \sin \alpha) \cong$$
$$\cong [-\frac{1}{2}k(\beta^{2} - \alpha^{2}), 0, k(\beta + \alpha)] = [-\frac{1}{2}(\beta - \alpha)q_{z}, 0, q_{z}]$$


 $\mathbf{k}_{2} = (k \cos \beta, 0, k \sin \beta)$

 $q_z \cong k(\alpha + \beta)$

 $\phi \ q_x << q_z \ \Rightarrow$ незеркальное рассеяние дает информацию только о достаточно крупных структурных особенностях (масштабов 0.1-100 мкм), о частицах/доменах того же размера.

МУРНСП (GISANS)

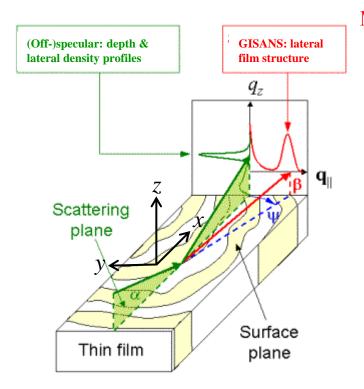


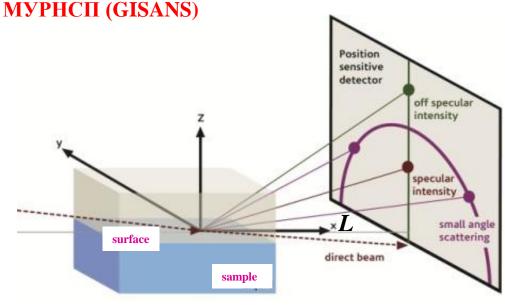
$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$

$$q = k_2 - k_1 = (q_x, q_y, q_z) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha)$$

- ♦ в общем случае плотность длины рассеяния зависит от 3 координат --> зеркальное отражение + незеркальное рассеяние + МУРНСП
- ♦ для разделения каналов рассеяния и реализации возможностей метода МУРНСП требуется квазиточечная геометрия с ограничением и ширины, и высоты пучка, и горизонтальной и вертикальной расходимости --> 3-мерная матрица интенсивностей $I(q_x, q_y, q_z)$ --> $\rho(x, y, z)$


$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$


 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$

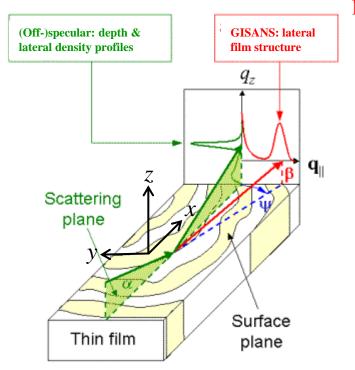
$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, q_{y}, q_{z}) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

$$\cong k \left(-\frac{1}{2} (\beta^{2} - \alpha^{2} + \psi^{2}), \psi, \beta + \alpha \right) = \left[-\frac{1}{2} (\beta - \alpha) q_{z} - \frac{1}{2} \psi \frac{\psi}{\beta + \alpha} q_{z}, \frac{\psi}{\beta + \alpha} q_{z}, q_{z} \right]$$

$$q_z \cong k(\alpha + \beta)$$

$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

 $\mathbf{k}_2 = (k \cos \beta \cos \psi, k \cos \beta \sin \psi, k \sin \beta)$


$$q_x = 0: \qquad \beta^2 + \psi^2 = \alpha^2$$
$$(L\beta)^2 + (L\psi)^2 = (L\alpha)^2$$

(рассеяние на усредненной по *х* плотности длины рассеяния)

$$q = k_2 - k_1 = (q_x, q_y, q_z) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

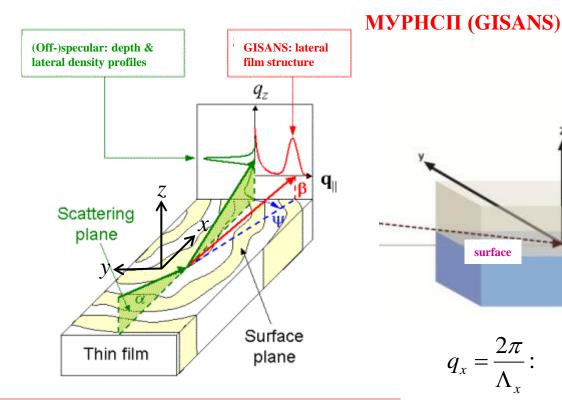
$$\cong k \left(-\frac{1}{2} (\beta^2 - \alpha^2 + \psi^2), \psi, \beta + \alpha \right) = \left[-\frac{1}{2} (\beta - \alpha) q_z - \frac{1}{2} \psi \frac{\psi}{\beta + \alpha} q_z, \frac{\psi}{\beta + \alpha} q_z, q_z \right]$$

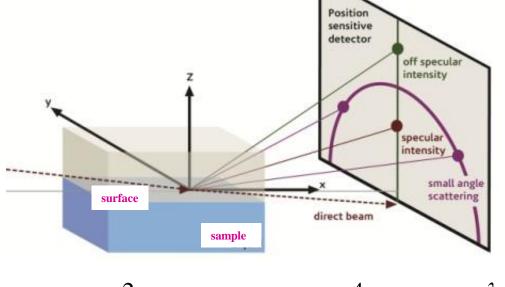
$$q_z \cong k(\alpha + \beta)$$

 $\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$

 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$

МУРНСП (GISANS)


$$q_x = 0$$
: $\beta^2 + \psi^2 = \alpha^2$


(нейтроны, рассеянные на гладкопрофильной структуре, ориентированной вдоль падающего пучка, попадают на окружность $q_x = 0$)

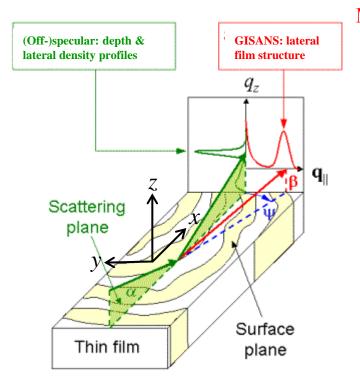
$$\mathbf{q} = \mathbf{k}_2 - \mathbf{k}_1 = (q_x, q_y, q_z) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

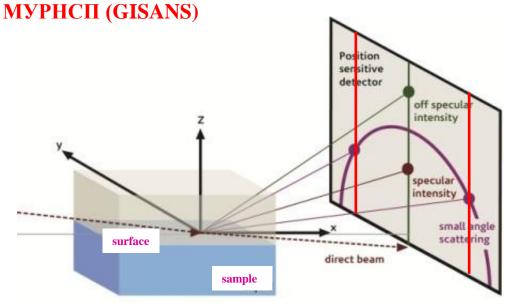
$$\cong k \left(-\frac{1}{2} (\beta^2 - \alpha^2 + \psi^2), \psi, \beta + \alpha \right) = \left[-\frac{1}{2} (\beta - \alpha) q_z - \frac{1}{2} \psi \frac{\psi}{\beta + \alpha} q_z, \frac{\psi}{\beta + \alpha} q_z, q_z \right]$$

$$q_z \cong k(\alpha + \beta)$$

$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$


 $q_x = \frac{2\pi}{\Lambda_x}$: $\beta^2 + \psi^2 = \alpha^2 \pm \frac{4\pi}{k\Lambda_x} = \alpha^2 \pm 2\frac{\lambda}{\Lambda_x}$ (рассеяние с q_x #0, связанное с фурье-компонентой плотности длины рассеяния, соответству-


ющей Λ_r – корреляционной длине вдоль оси x)

$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, q_{y}, q_{z}) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

$$\cong k \left(-\frac{1}{2} (\beta^{2} - \alpha^{2} + \psi^{2}), \psi, \beta + \alpha \right) = \left[-\frac{1}{2} (\beta - \alpha) q_{z} - \frac{1}{2} \psi \frac{\psi}{\beta + \alpha} q_{z}, \frac{\psi}{\beta + \alpha} q_{z}, q_{z} \right]$$

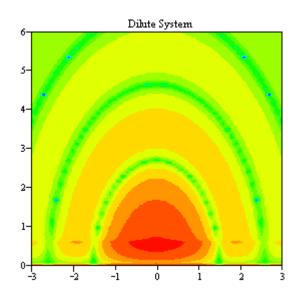
$$q_z \cong k(\alpha + \beta)$$

$$\mathbf{k}_1 = (k \cos \alpha, 0, -k \sin \alpha)$$

 $\mathbf{k}_2 = (k\cos\beta\cos\psi, k\cos\beta\sin\psi, k\sin\beta)$

$$q_y = \frac{2\pi}{\Lambda_y}$$
: $\psi = \pm \frac{4\pi}{k\Lambda_y} = \pm 2\frac{\lambda}{\Lambda_y}$

(рассеяние, связанное с фурье-компонентой плотности длины рассеяния, соответствующей корреляционной длине Λ_{y} вдоль оси y)

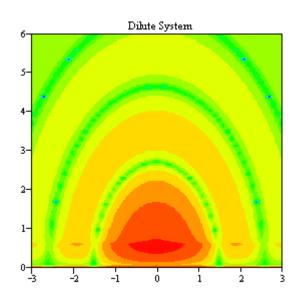

$$\mathbf{q} = \mathbf{k}_2 - \mathbf{k}_1 = (q_x, q_y, q_z) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

$$\cong k \left(-\frac{1}{2} (\beta^2 - \alpha^2 + \psi^2), \psi, \beta + \alpha \right) = \left[-\frac{1}{2} (\beta - \alpha) q_z - \frac{1}{2} \psi \frac{\psi}{\beta + \alpha} q_z, \frac{\psi}{\beta + \alpha} q_z, q_z \right]$$

$$q_z \cong k(\alpha + \beta)$$

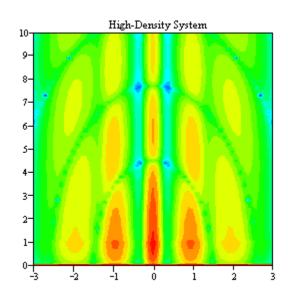
МУРНСП (GISANS)

Intensity calculated in the quasikinematic approximation for X-ray scattering at oblate elliptical nanoparticles on a wafer surface



A dilute layer of monodisperse oblate elliptical nanoparticles

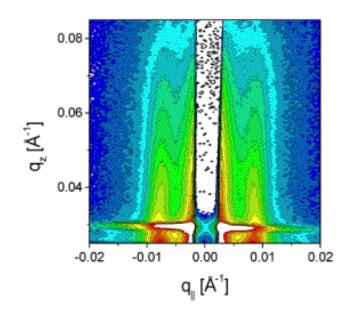
Для раствора с небольшим количеством монодисперсных наночастиц важную роль играет разброс расстояний между наночастицами (среднее расстояние - микроны)--> окружности. Закон усиления и ослабления рассеяния задается формфактором (ККП), который зависит от размера, содержания, формы и ориентации частиц


МУРНСП (GISANS)

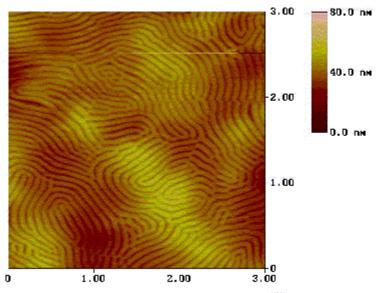
Intensity calculated in the quasikinematic approximation for X-ray scattering at oblate elliptical nanoparticles on a wafer surface

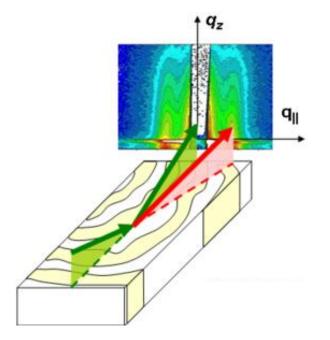
A dilute layer of monodisperse oblate elliptical nanoparticles

Для раствора с небольшим количеством монодисперсных наночастиц важную роль играет разброс расстояний между наночастицами (среднее расстояние - микроны)--> окружности. Закон усиления и ослабления рассеяния задается формфактором (ККП), который зависит от размера, содержания, формы и ориентации частиц



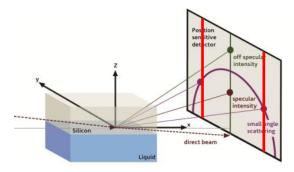
A dense layer of monodisperse oblate elliptical nanoparticles with well-defined nearest-neighbor distances (in-plane correlations).


При тесном сближении и взаимодействии наночастиц следует учесть структурный фактор (ККП), который зависит от упаковки нано-частиц – теперь расстояние между ними и взаимная ориентация могут быть вполне определенными --> вертикальные полосы


МУРНСП (GISANS)

The GISAXS pattern for a lamellar system of polystyrenepolybutadiene (PS-PB) block copolymers with a period of about 75 nm.

An AFM image of a diblock PS-PB copolymer film displaying vertical lamellae.



$$\mathbf{q} = \mathbf{k}_{2} - \mathbf{k}_{1} = (q_{x}, q_{y}, q_{z}) = k(\cos\beta\cos\psi - \cos\alpha, \cos\beta\sin\psi, \sin\beta + \sin\alpha) \cong$$

$$\cong k \left(-\frac{1}{2}(\beta^{2} - \alpha^{2} + \psi^{2}), \psi, \beta + \alpha \right) = \left[-\frac{1}{2}(\beta - \alpha)q_{z} - \frac{1}{2}\psi\frac{\psi}{\beta + \alpha}q_{z}, \frac{\psi}{\beta + \alpha}q_{z}, q_{z} \right]$$

(приближение малых углов) $q_z \cong k(\alpha + \beta)$

$$q_z \cong k(\alpha + \beta)$$

РЕЗЮМЕ

• Важнейшая особенность метода нейтронной рефлектометрии:

 q_x всегда намного меньше q_z , а q_y может быть как меньше, так и больше $q_z o$ незеркальное рассеяние используется для изучения латеральных корреляций структуры масштабов $10^2 - 10^5$ нм, а МУРНСП - для изучения наночастиц и латеральных корреляций структуры масштабов от 10^2 нм до атомных (ДСП=GID).

- Малые углы скольжения означают существенное увеличение пути падающих нейтронов в исследуемых структурах на поверхности образца > нейтронная рефлектометрия позволяет исследовать нанограммные количества вещества
- Относительная слабость нейтронных источников существенно ограничивает возможности нейтронной рефлектометрии: зеркального отражения (!), незеркального рассеяния (!!) и МУРНСП (!!!) → для съемок МУРНСП 1 прибор
- Предпочтительнее геометрия с вертикальным расположением поверхности образцов (сечение нейтроноводов, механика) - для жидких образцов 1 прибор.

КОНЦЕПЦИЯ НЕЙТРОННОЙ РЕФЛЕКТОМЕТРИИ

Задача: Получение прямой, надежной, недоступной другим методам информации при решении актуальных в настоящее время фундаментальных и прикладных задач, мотивируемых развитием нанотехнологий и включающих исследования функциональных наноматериалов и наносистем, которые представляют интерес для бурно развивающихся областей физики, химии и биологии.

Необходимо обеспечить с помощью измерений:

- \bullet незеркального рассеяния нейтронов возможность изучения латеральных структур и корреляций на масштабах 10^2 10^5 нм (в плоскости зеркального отражения);
- \star малоуглового рассеяния и атомной дифракции нейтронов при скользящем падении возможность изучения латеральных структур на масштабах от атомного до 10^2 нм (в направлении, перпендикулярном плоскости зеркального отражения).

РЕКОМЕНДАЦИИ ЭКСПЕРТНОЙ ГРУППЫ

В рамках общей концепции нейтронной рефлектометрии на реакторе ПИК экспертная группа рекомендует создание следующих базовых приборов:

• Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальный образец). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.

РЕКОМЕНДАЦИИ ЭКСПЕРТНОЙ ГРУППЫ

В рамках общей концепции нейтронной рефлектометрии на реакторе ПИК экспертная группа рекомендует создание следующих базовых приборов:

- Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальный образец). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.
- Высоко-светосильный рефлектометр среднего разрешения с горизонтальной плоскостью зеркального отражения (вертикальный образец). Основное назначение: изучение образцов малых размеров; ультратонких, вплоть до моноатомных, пленок; приграничных областей, процессов на границах; быстрой кинетики в пленках и гетероструктурах.

«Рефлектометр с векторным анализом поляризации»

Уникальной особенностью прибора является то, что он представляет собой рефлектометрический кластер из двух секторов, объединенных для решения одной задачи: обеспечения съемок зеркального отражения и незеркального рассеяния в максимально широкой области переданных импульсов и оптимальным соотношением между разрешением и светосилой для вертикальных образцов.

- **Секторы:** высокого разрешения (UNISON); высокой светосилы (ACCORD)
- **Независимость секторов:** формирование отдельных пучков, одновременная съемка двух образцов

«Рефлектометр с векторным анализом поляризации» Сектор UNISON

В секторе будет сформирован монохроматический пучок для проведения измерений зеркального отражения и незеркального рассеяния с максимально высоким разрешением, позволяющим определять с высокой точностью как глубинные профили распределения ядерной плотности и вектора намагниченности (на масштабах 1 нм – 1 мкм), так и особенности латеральных структур масштаба 100 нм – 100 мкм.

- **Плоскость рассеяния:** горизонтальная (вертикальный образец)
- **❖** <u>Коллимационная геометрия</u>: щелевая с фокусировкой в вертикальной плоскости
- **Режимы:** с постоянной длиной волны; (время-пролетный)
- **Опции**: неполяризованный пучок; поляризованный пучок
- ❖ Платформы: базовая; векторная поляриметрия с монохроматическим пучком; рефлектометрия с временным разрешением
- * Специализация: рефлектометрия с высоким разрешением и рекордно высокой поляризацией пучка, послойная векторная магнитометрия; статические и динамические магнитые корреляции, динамика и кинетика процессов в латеральных наноструктурах

«Рефлектометр с векторным анализом поляризации» Сектор ACCORD

Сектор должен конструироваться для проведения измерений с умеренным и низким разрешением в горизонтальной плоскости, но с максимальной интенсивностью в режимах как с монохроматическим, так и с белым пучком; для этого в вертикальной плоскости обеспечивается максимальная фокусировка пучка на образце, что также важно для работы с образцами малых размеров. С большой светосилой связана возможность съемки сечений рассеяния в области больших (опция GID: до 10-20 нм⁻¹) переданных волновых векторов.

- **Плоскость рассеяния:** горизонтальная (вертикальный образец)
- **❖** <u>Коллимационная геометрия</u>: щелевая с фокусировкой в вертикальной плоскости
- **Режимы:** с постоянной длиной волны; время-пролетный
- **❖** Опции: неполяризованный пучок; поляризованный пучок
- * <u>Платформы</u>: базовая; векторная поляриметрия с белым пучком; суперфокусировка пучка на образце; дифракция при скользящем падении
- ❖ Специализация: образцы малых размеров; большие переданные волновые векторы; процессы на границах фаз; перенос вещества через границы, мембраны и т.д.; исследования тонких и ультратонких пленок; корреляции структурных и магнитных особенностей

РЕКОМЕНДАЦИИ ЭКСПЕРТНОЙ ГРУППЫ

В рамках общей концепции нейтронной рефлектометрии на реакторе ПИК экспертная группа рекомендует создание следующих базовых приборов:

- Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальная поверхность образца). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.
- Высоко-светосильный рефлектометр среднего разрешения с горизонтальной плоскостью зеркального отражения. Основное назначение: изучение образцов малых размеров; ультратонких, вплоть до моноатомных, пленок; приграничных областей, процессов на границах; быстрой кинетики в пленках и гетероструктурах.
- Рефлектометр с вертикальной плоскостью зеркального отражения и варьируемым разрешением, предназначенный для экспериментов с поверхностями и межслойными границами в жидкостях. Прибор может быть оснащен дополнительной опцией для измерения латеральной атомной дифракции при малых углах скольжения.

«Рефлектометр поляризованных нейтронов с вертикальной плоскостью отражения REVERANS»

Рефлектометр будет конструироваться как прибор с варьируемым (от умеренно высокого до низкого) разрешением в вертикальной плоскости и с фокусировкой пучка в горизонтальной плоскости для работы с образцами с горизонтальной отражающей поверхностью. Важнейшим отличием данного прибора от остальных приборов рефлектометрического комплекса является возможность съемки сечений рассеяния нейтронов от поверхностей и межслойных границ жидкостей. Для этого прибор необходимо оснастить специальной системой отклоняющих зеркал, обеспечивающей изменение в достаточно широком диапазоне угла падения (угла скольжения) нейтронного пучка на горизонтальную поверхность образца в жидком состоянии.

- **Плоскость рассеяния:** вертикальная (горизонтальный образец)
- **❖** <u>Коллимационная геометрия</u>: щелевая с фокусировкой в горизонтальной плоскости
- **Режимы:** с постоянной длиной волны; время-пролетный
- ❖ Опции: неполяризованный пучок; поляризованный пучок
- ❖ Платформы: базовая; дифракция при скользящем падении
- * Специализация: поверхности, границы жидкостей; упорядочение наночастиц на границе жидкой фазы; процессы на границах и через границу жидких фаз; магнетизм феррожидкостей и магнитных наночастиц в жидкости

РЕКОМЕНДАЦИИ ЭКСПЕРТНОЙ ГРУППЫ

В рамках общей концепции нейтронной рефлектометрии на реакторе ПИК экспертная группа рекомендует создание следующих базовых приборов:

- Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальная поверхность образца). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.
- Высоко-светосильный рефлектометр среднего разрешения с горизонтальной плоскостью зеркального отражения. Основное назначение: изучение образцов малых размеров; ультратонких, вплоть до моноатомных, пленок; приграничных областей, процессов на границах; быстрой кинетики в пленках и гетероструктурах.
- Рефлектометр с вертикальной плоскостью зеркального отражения с варьируемым разрешением, предназначенный для экспериментов с поверхностями и межслойными границами в жидкостях. Прибор может быть оснащен дополнительной опцией для измерения латеральной атомной дифракции при малых углах скольжения.

Дополнительно предлагается создание двух специализированных приборов с рефлектометрическими функциями для удовлетворения всех исследовательских запросов:

• Рефлектометр, оптимизированный для измерений малоуглового рассеяния нейтронов при скользящем падении и предназначенный для детального исследования латеральных структур и поверхностных флуктуаций в нано-метровом диапазоне.

«Нейтронно-оптический рефлектометр»

МУРНСП (GISANS)

- Рефлектометр задуман как прибор, сочетающий рефлектометрические концепции с концепциями стандартных методов малоуглового рассеяния и дифракции нейтронов. В отличие от остальных приборов рефлектометрического комплекса он предназначен для съемок не только зеркального отражения и незеркального рассеяния в плоскости зеркального отражения, прежде всего в плоскости, перпендикулярной плоскости зеркального отражения, т.е. для съемок малоуглового рассеяния нейтронов при скользящем падении (GISANS). Поэтому его спецификой является использование квазиточечной, а не щелевой коллимационной геометрии, а также изменение расстояния образец-детектор от 1 до 10 м. Предусматривается возможность измерений дифракции на атомных плоскостях при скользящем падении нейтронов. Тонко-пленочные структуры с наномасштабными агломератами (гранулами, квантовыми точками, белками, пептидами, вирусами и т.п.) составляют все более заметную долю среди объектов исследования для инновационных нано-технологий и представляют все больший интерес для развивающейся нано-науки в областях физики, химии и биологии.
- **❖** <u>Плоскость рассеяния</u>: горизонтальная (вертикальный образец)
- ***** <u>Коллимационная геометрия</u>: квазиточечная
- **❖** Режимы: с постоянной длиной волны; время-пролетный
- **❖** Опции: неполяризованный пучок; поляризованный пучок
- **❖** <u>Платформы</u>: базовая; дифракция при скользящем падении
- ❖ Специализация: съемки МУРНСП (GISANS), тонко-пленочные структуры с наномасштабными агломератами; корреляции структурных и магнитных нанообъектов; внутренняя структура, ориентация и взаимное упорядочение латеральных наноструктур и наночастиц

РЕКОМЕНДАЦИИ ЭКСПЕРТНОЙ ГРУППЫ

В рамках общей концепции нейтронной рефлектометрии на реакторе ПИК экспертная группа рекомендует создание следующих базовых приборов:

- Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальная поверхность образца). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.
- Высоко-светосильный рефлектометр среднего разрешения с горизонтальной плоскостью зеркального отражения. Основное назначение: изучение образцов малых размеров; ультратонких, вплоть до моноатомных, пленок; приграничных областей, процессов на границах; быстрой кинетики в пленках и гетероструктурах.
- Рефлектометр с вертикальной плоскостью зеркального отражения с варьируемым разрешением, предназначенный для экспериментов с поверхностями и межслойными границами в жидкостях. Прибор может быть оснащен дополнительной опцией для измерения латеральной атомной дифракции при малых углах скольжения.

Дополнительно предлагается создание двух специализированных приборов с рефлектометрическими функциями для удовлетворения всех исследовательских запросов:

- Рефлектометр, оптимизированный для измерений малоуглового рассеяния нейтронов при скользящем падении и предназначенный для детального исследования латеральных структур и поверхностных флуктуаций в нано-метровом диапазоне.
- Рефлектометр для развития и аттестации неполяризующих и поляризующих покрытий, а также нейтронно-оптических элементов и устройств.

«Рефлектометр на поляризованных нейтронах с анализом поляризации NERO»

❖ Рефлектометр необходим для исследования пленочных и многослойных структур, используемых в качестве (магнитных) покрытий для нейтронных (поляризующих) зеркал и суперзеркал, с помощью измерений зеркального и незеркального рассеяния нейтронов с анализом поляризации, для аттестации изготавливаемых покрытий и выбора оптимальных режимов их изготовления, аттестации нейтронно-оптических элементов для нейтроноводов, формирователей нейтронных пучков, нейтронных поляризаторов и анализаторов, других нейтронно-оптических устройств. В связи с появлением инновационного направления нейтронной оптики − нейтронной спин-манипуляционной оптики − предусматривается реализация схемы сферической поляриметрии.

- **❖** <u>Плоскость рассеяния</u>: горизонтальная (вертикальный образец)
- **❖** <u>Коллимационная геометрия</u>: щелевая
- **Режимы:** с постоянной длиной волны
- **Опции**: неполяризованный пучок; поляризованный пучок
- ❖ Платформы: базовая; сферическая поляриметрия
- **Специализация:** многослойные покрытия нейтронной оптики, в т.ч. поляризующие (магнитные); покрытия нейтронной спин-манипуляционной нейтронной оптики

Список рефлектометров

- Рефлектометр высокого разрешения с горизонтальной плоскостью зеркального отражения (вертикальная поверхность образца). Основное назначение: изучение твердофазных тонких пленок и многослоек (в том числе латерально структурированных), гетероструктур.
- Высоко-светосильный рефлектометр среднего разрешения с горизонтальной плоскостью зеркального отражения. Основное назначение: изучение образцов малых размеров; ультратонких, вплоть до моноатомных, пленок; приграничных областей, процессов на границах; быстрой кинетики в пленках и гетероструктурах
- → «рефлектометр с векторным анализом поляризации» (рефлектометрический кластер из двух секций UNISON и ACCORD).
- Рефлектометр с вертикальной плоскостью зеркального отражения с варьируемым разрешением, предназначенный для экспериментов с поверхностями и межслойными границами в жидкостях. Прибор может быть оснащен дополнительной опцией для измерения латеральной атомной дифракции при малых углах скольжения
- → <u>«рефлектометр поляризованных нейтронов с вертикальной плоскостью</u> <u>отражения REVERANS»</u>.
- Рефлектометр, оптимизированный для измерений малоуглового рассеяния нейтронов при скользящем падении и предназначенный для детального исследования латеральных структур и поверхностных флуктуаций в нано-метровом диапазоне
 - → «нейтронно-оптический рефлектометр».
- Рефлектометр для исследований и аттестации неполяризующих и поляризующих покрытий, а также нейтронно-оптических элементов и устройств
 - → «рефлектометр на поляризованных нейтронах с анализом поляризации NERO».

ЗАКЛЮЧЕНИЕ

Комплекс специализированных взаимодополняющих рефлектометров обеспечит выбор

- адекватной измерительной схемы,
- требуемой области переданных импульсов,
- оптимального соотношения между разрешением и светосилой

и позволит находить эффективные решения для широкого круга экспериментальных задач.

