Ядерное резонансное рассеяние СИ при энергиях выше 30 кэВ. Развитие и применение метода.

Илья Сергеев, PETRAIII, Hamburg, Germany

Линии ядерного резонансного рассеяния:

ID18 @ ESRF

Nuclear Resonance Scattering

Mössbauer isotopes

H	W - Mössbauer isotopes										He						
Li	Be B C N O F										Ne						
Na	Mg Al Si P S (Cl	Ar							
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac**											•	-	•		

Lanthanides*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides**	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Available Mössbauer isotopes: time MS:

NIS:

⁵⁷Fe, ¹¹⁹Sn, ¹⁵¹Eu, ¹⁴⁹Sm, ¹⁶¹Dy, ¹²¹Sb, ¹²⁵Te

Aplications of time Mössbauer spectroscopy

Collimation of the beam

PRL 109, 026403 (2012) PHYSICAL REVIEW LETTERS

week ending 26 FEBRUARY 2010

Reentrant Valence Transition in EuO at High Pressures: Beyond the Bond-Valence Model N.M. Souza-Neto,^{12,4} J. Zhao,¹ E. E. Alp,¹ G. Shen,³ S. V. Sinogeikin,³ G. Lapertot,⁴ and D. Haskel^{1,†}

week ending 13 JULY 2012

Ļ

High brilliance of the source

PRL 104, 087601 (2010) PHYSICAL REVIEW LETTERS

Nuclear Forward Scattering of Synchrotron Radiation in Pulsed High Magnetic Fields

 measurements under extreme conditions high / low T high pressure magnetic field

surfaces and nanoscale materials

Applications of NIS

- Geoscience
- glass physics
- nanoscale materials
- thermoelectrics

PRL 100, 235503 (2008)	PHYSICAL	REVIEW	LETTERS	week ending 13 JUNE 2008
------------------------	----------	--------	---------	-----------------------------

Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

S. Stankov,¹ Y.Z. Yue,^{2,3} M. Miglierini,⁴ B. Sepiol,⁵ I. Sergueev,¹ A. I. Chumakov,¹ L. Hu,^{2,3} P. Svec,⁶ and R. Rüffer¹

RSCPublishing

PER			

Phonon spectroscopy in a Bi₂Te₃ nanowire array

Cite this: Nanoscale, 2013, 5, 10629

Dimitrios Bessas,†^{ab} William Töllner,^c Zainul Aabdin,^d Nicola Peranio,^d Ilya Sergueev,‡^e Hans-Christian Wille,[†] Oliver Eibl,^d Kornelius Nielsch^c and Raphaël P. Hermann^{*ab}

Mössbauer Spectroscopy with ⁶¹Ni and ⁷³Ge

⁶¹Ni:

E = 67.4 keV τ_0 = 7.60 ns transition: 3/2⁻ \rightarrow 5/2⁻

Sources:

- ⁶¹Co (β-, 99 min)
- ⁶¹Cu (EC, 3.41 h)

McCammon et al, Hyp. Int. 28 (1986) 483

 73 Ge: E = 68.75 keV τ_0 = 2.51 ns transition: 9/2+→7/2+ <u>Source:</u> Coulomb excitation

Czjzek et al, Physical Review 174 (1968) 331

Experimental setup

Detector: Array of 16 Si APDs Efficiency @ 67keV ~ 20%

Time MS with ⁶¹Ni and ⁷³Ge

Time (ns)

R. Simon et al., EPL 104(2013) 17006

Time (ns)

Highest pressure for magnetism

X-ray diffraction: fcc phase up to 150 / 200 GPa,

Theory: predicts continuous decrease of magnetic moment up to 300 – 34000 GPa

Highest pressure for magnetism

Measurements

I.Sergueev et al., PRL 111(2013)157601.

H – hyperfine magnetic field

Highest pressure for magnetism

- Ni is ferromagnetic at room temperature up to 260 GPa.
- Measurements at higher pressure are required in order to find critical pressure.

Magnetic moment vs volume (theory)

Hyp. magn. field vs volume (theory)

Time MS of Ni at HP. Elastic properties

High Resolution Monochromators. Multiple-crystal approach

Si reflections with Bragg angle = 84° Si reflection 17 17 17 777 12 12 12 E, keV 13.9 23.9 33.8 $\Delta E, meV$ 0.7 0.06 5 $\Delta \theta$, urad 3.4 0.3 0.02 R,% 80 73 22

SR beam divergence: 10-20 urad

2 steps of collimation:

1. Compound refractive lenses

from 10-20 µrad to 2-5 µrad

Backscattering Monochromators

Burkel, Rep. Prog. Phys. 63(2000)171

Si reflections with Bragg angle = 90°

Si reflection	777	12 12 12	17 17 17
E, keV	13.8	23.7	33.6
$\Delta E, meV$	5	0.7	0.06
$\Delta \theta$, urad	970	320	83
R,%	80	73	22

Energy is defined by Si crystal lattice

Y.V. Shvyd'ko and E. Gerdau, Hyp. Interact. 123 (1999)

Crystal with low symmetry (sapphire, quartz)

At least 2 reflections in 150-300K for any E > 20keV

Sapphire backscattering monochromator

Experimental Setup and Instrumental Functions

	101	405-	440 -	100
	¹²¹ Sb	¹²⁵ Te	¹¹⁹ Sn	¹²⁹ Xe
E/ keV	37.13	35.49	23.88	39.58
Reflection	(8 16 40)	(9 1 68)	(4 4 45)	(5 17 54)
Т/К	237	220	193	291
Angle / degree	59	24	26	49
				-1
$\Delta \mathbf{E}_{th}$ / meV	0.4	0.7	1.0	0.5
$\Delta \mathbf{E}_{\mathbf{exp}}$ / meV	0.7	0.7	1.0	0.9

Energy band width ~0.7 meV,

 $\Delta E / E = 2 \cdot 10^{-8}$

Application. Phonons in Sb₂Te₃

Thermoelectrics.Current trends

Commercial materials

Snyder and Toberer, Nature Mat. 7(2008)

Search for "phonon glass, electron crystal"

TEM images of a $Si_{80}Ge_{20}$ nanocomposite Wang et al., Appl. Phys. Lett., 93 (2008).

Thermoelectrics. Skutterudites

Lattice thermal conductivity

Sales et al., Science, 272(1996)

Is CoSb₃ a good reference for filled skutterudite lattice dynamics?

FeSb₃ is thermodynamically unstable.

Synthesis of Metastable FeSb₃ using multilayer precursors (Hornbostel et al., J. Am. Chem. Soc. 1997, 119, 2665)

\rightarrow 1-1.5 µm films of **FeSb**₃

Möchel et al, Phys. Rev. B, 84(2011)064302

Phonons in skutterudites. EuFe₄Sb₁₂ vs FeSb₃

М

m

Ø

Phonons in skutterudites. High pressure study

Grüneisen parameter

High pressure diffraction

Sapphire monochromator. Perspectives

Improvement of the sapphire quality

at 35 k	keV	а	t 50 keV
thickness	∆E / meV	thickne	ss Refl-ty / %
1 mm	0.7	1 mm	2
2 mm	0.3	2 mm	7
5 mm	0.1	5 mm	30

Resolution to measure:

- phonon line broadening
- mean sound velocity

New elements: ¹⁸³W 46.5 keV ¹⁸⁹Os 36.2 keV ²³⁸U 44.9 keV ²⁴⁰Pu 42.8 keV

Sapphire ultraoptics for synchrotron radiation

Helmholtz-Russia Joint Research Group HRJRG-402 Partners: Russia - RAS Shubnikov IC, Moscow Germany – Forschungszentrum Jülich, DESY, ANKA

Apply for extreme conditions (high P):

Feasibility high pressure study: R.Simon et al., Semicond. Sci. Technol. 00 (2014)

Requires setup to perform low T/ high pressure measurements

Acknowledgment

Argonne National Laboratory Yuri V. Shvyd'ko

ESRF Nuclear Resonance Group

Rudolf Rüffer, Alexander Chumakov, Jean-Philippe Celse, Cornelius Strohm, Thanh Hai Deschaux-Beaume, Marcin Zajac, Vasily Potapkin, **Dimitrios Bessas**

P01

Bayerisches Geoinstitut Leonid Dubrovinsky

внимание

1 1

MANNIN

YHNBEPCHTET

Quality of sapphire crystals

Time Mössbauer spectroscopy above 60 keV

Phase change materials for storage devices

Candidate for memory materials:

- Fast ~10 ns
- Dense ∅ << 50nm
- Stable several years /bit
- Long-lived 10¹² cycles

Today: optical contrast: storage media, DVD, Blu-Ray. Future: resistivity contrast: fast non volatile memory!

Elastic properties of Ge₂Sb₂Te₄

Hardening upon crystallization

	Amorphous	Crystalline
C ₁₁	31 GPa	48 GPa
VL	2280 m/s	2770 m/s
C ₄₄	10 GPa	16 GPa
V _T	1300 m/s	1600 m/s
V _{Debye}	1440 m/s	1770 m/s

Blachowicz et al., J. Appl. Phys. **102**, 093519 (2007)

Softening upon crystallization

Matsunaga et al., Adv. Funct. Mater. 21(2011)2232

Amorphous and crystalline state of Ge₂Sb₂Te₄

Sample: ~1 µm film deposited on AI, T=20 K

Matsunaga et al., Adv. Funct. Mat., 21(2011)2232

	SI	С	Те			
	B, Å ²	F, N/m	B, Å ²	F, N/m		
Amorphous	0.184(2)	97(4)	0.198(2)	84(4)		
NaCl	0.166(2)	72(4)	0.160(2)	68(4)		

Crystalline: Weak "resonance" bonding

Combination of NIS on ¹²⁵Te and ¹²¹Sb and INS (IXS) \Rightarrow Ge PDOS

Thermoelectrics. Applications

ТГ-1, «партизанский котелок» Юрий Маслаковец, Лениградский физтех, 1943

Radioisotope Thermoelectric Generator, Mars Science Laboratory https://solarsystem.nasa.gov/rps/rtg.cfm

Thermoelectric stations for gas pipe lines http://www.telgen.ru/

http://biolitestove.com/products/campstove/

