Малоугловое рассеяние рентгеновских лучей и нейтронов в исследовании строения вещества: принципы, методы, алгоритмы.

В.В. Волков

Федеральное государственное бюджетное учреждение науки Институт кристаллографии им. А. В. Шубникова Российской академии наук (ИК РАН) vvo@ns.crys.ras.ru volkicras@mail.ru

<mark>Тәр</mark>мин

- Малоугловое рассеяние диффузное рассеяние рентгеновских лучей и нейтронов вблизи первичного луча на апериодических флуктуациях плотности в веществе.
- Картина малоуглового рассеяния, как и дифракционная картина, является результатом интерференции лучей, когерентно рассеянных на образце. При типичных длинах волн излучения в диапазоне от 0,05 до 0,5 нм малоугловое рассеяние позволяет исследовать структуры размерами от единиц до нескольких сотен нанометров.

Схема лабораторной установки малоуглового 2 рентгеновского рассеяния

Лабораторные установки МУР

Специализированные установки

Многоцелевые установки

Синхротронная станция в КИСИ

Дифракционные рентгеновские исследования различных материалов в малых и средних углах

Дифракция от монокристаллов и кристаллических порошков: трехмерная структура элементарной ячейки, большие периоды, высокое разрешение

Дифракция от разупорядоченных кристалличесих и ламеллярных частиц, находящихся в аморфной матрице – размер и распределение по размерам частиц и параметры их внутренней структуры - длина пространственной когерентности, профили плотности и межплоскостные расстояния в ламеллярных системах

Полидисперсные частицы в аморфной матрице: распределение по размерам при заданном формфаторе частиц

Одинаковые разупорядоченные частицы (монодисперсные системы, например, растворы белковых молекул): максимальный диаметр частиц, радиус инерции, форма.

Рентгеновская рефлектометрия: толщина и плотность слоев, шероховатость границ и поверхности.

Малоугловое рассеяние при скользящем падении пучка (Grazing Incidence Small-Angle Scattering (GISAXS): морфология частиц и неоднородностей в толщине пленки и вблизи поверхности

Проблема однозначности определения деталей структурной организации в дифрактометрии

Полидисперсные смеси наночастиц

Сложные смеси: <u>разные формфакторы</u> частиц, полидисперсность, межчастичная интерференция

7

 $I(s) = const \sum_{k=1}^{K} \varphi_k I_k(s, R_{0k}, \Delta R_k) S_k(s, R_k^{sh}, \eta_k, \tau_k)$

Распределение по размерам наночастиц <u>одинаковой</u> **8** <u>соормы</u> - решение методом регуляризации: программа GNOM – подход 1. $I(s) = \int_{0}^{\infty} D_{V}(R) \cdot m^{2}(R) \cdot i(sR) \cdot dR$

$$\min\left\{\left\|I_{\exp}(s) - I_{calc}(s)\right\|^2 + \alpha \left\|\frac{dD_{v}(r)}{dr}\right\|^2\right\}$$

Проблема гладкости решения – подбор параметра регуляризации «

Программа MIXTURE – моделирование распределений наночастиц по размерам при <u>разных</u> формфакторах компонентов – подход 2.

c_i = ? Параметры распределения = ?

Метод решения: поиск параметров индивидуальных распределений для каждой из фаз и их относительных вкладов C_i методом нелинейной минимизации

наименьших квадратов отклонений модельной интенсивности от эксперимента.

Моделирование интенсивности малоуглового рассеяния от полидисперсной системы.

Без учета межфазной интерференции, такую интенсивность можно разложить на составляющие:

$$I(s) = \sum_{k} v_k I_k(s)$$

где суммирование проводится по разным компонентам (фазам),

v_k - относительная объемная доля *k*-й фазы,

I_k(s)- интесивность *k*-й фазы, *s* – модуль вектора рассеяния:

 $|s| = \frac{4\pi}{\lambda}\sin\theta$

2*θ* - угол рассеяния

В полидисперсном случае "базисные" интенсивности каждой фазы определяются следующим образом:

$$I_k(s) = \int D_k(R)i_k(sR)S_k(sR)V_k(R)dR$$

где *R* - эффективный размер частицы

i_{ok}(sR) - нормированный формфактор *k*-й компоненты

D_k(R) - нормированное распределение частиц по размеру для k-й фазы

S_k(sR) - структурный фактор для k-й компоненты, ответственный за межчастичное взаимодействие

V_k(R) - эффективный объем частиц с размером для *k*-й фазы.

Используем аналитическое выражение Шульца для функции полидисперсности к-ой фазы:

$$D(R) = \frac{1}{R_0} (z+1)^{z+1} \frac{1}{\Gamma(z+1)} \left(\frac{R}{R_0}\right)^z \exp\left[-\frac{(z+1)R}{R_0}\right]$$
$$z = \left(\frac{R_0}{\Lambda R}\right)^2 - 1$$

R0 – среднее значение размера частицы (матожидание)
 ∆R – дисперсия распределения
 Г(z) – Гамма-функция

Интерпретация данных рассеяния от водно-масляной эмульсии трехкомпонентной смесью наночастиц.

Типичная форма распределения по радиусам частиц в смеси

Экспериментальные интенсивности (светлые кружки) малоуглового рассеяния микроэмульсии АОТ/вода/изооктан с концентрацией воды 2%. Рисунок <u>слева вверху</u>: диапазон температур 15-55° С, W₀=25. Рисунок <u>справа</u>: диапазон 20-40° С, W₀=45. Интенсивности рассчитанные в рамках 2х-компонентной модели показаны штриховыми линиями, а в рамках 3хкомпонентной модели - сплошными линиями.

W₀=мол. отношение H₂O:изооктан

Расхождения между экспериментальными и теоретическими кривыми обусловлены неучетом агломератов АОТ.

Проблема устойчивости решений – необходимы численные эксперименты

<u>Частично упорядоченные</u> системы:

15

Полиоктадецилсилоксановые матрицы с наночастицами

16 Расчет объемных распределений по размерам D_v(R) наночастиц золота в матрице полиоктадецилсилоксана

Starodoubtsev S.G., ..., Volkov V.V., Dembo K.A., Klechkovskaya V.V., Shtykova E.V., Zanaveskina I.S. Microelectronic Engineering (2003). V.69, P.324-329

Образование металлических наночастиц золота в 17 структурированных полимерных матрицах полиоктадецилсилоксана

формирование структурированной матрицы насыщение матрицы раствором соли

сстановлени соли до металла

магнитоэластики (наночастицы магнитных материалов)

Особенности кривых малоуглового рассеяния кля полимерных систем с наночастицами

Присутствие Брэгговских пиков → Сильное центральное рассеяние от наночастиц металлов → Взаимное расположение пиков соответствует ламеллярному характеру упаковки в полимерных системах.

◆ Положение бреэгговских пиков определяет основной характеристический размер образца – периодичность структуры = $2\pi/q_{max}$.

◆ Рамер кристаллитов *L* определяется полушириной максимума интенсивности рассеяния в угол 2*θ*.

◆ Взаимное расположение вторичных пиков определяет характер упаковки в системе. – иметоко еиноделоно<mark>М</mark> растворы белков

Малоугловое рентгеновское рассеяние от систем одинаковых частиц (например, растворов белковых молекул)

Структурные инварианты для монодисперсных разбавленных систем

20 Сводка интегральных параметров наночастиц, определяемых по данным МУР от определяемых по данным МУР от монодисперсных разбавленных систем

Функция парных расстояний: $I(s) = 4 \cdot \pi \int r^2 \cdot \gamma(r) \cdot \sin(sr)/sr \, dr$

 $= 4 \cdot \pi \int p(r) \cdot \sin(sr)/sr \, dr);$

Радус инерции: $I(s) = I(0) \cdot \exp(-R_{g}^{2} \cdot s^{2}/3)$ (формула Гинье), где $I(0) \sim N \cdot (V \cdot \rho)^2 \sim N \cdot M^2;$ $\mathbf{R}_{\sigma}^{2} = \int \rho(r) \cdot r^{2} \, \mathrm{d}r \int \rho(r) \, \mathrm{d}r = \int r^{4} \cdot \gamma(r) \, \mathrm{d}r / 2 \int r^{2} \gamma(r) \, \mathrm{d}r$ Объем: $V = 4 \cdot \pi \int r^2 \cdot \gamma(r) dr = 4 \cdot \pi \int p(r) dr;$ Средняя дина хорды: $l_m = 2 \int \gamma_0(r) dr;$ Площадь поверхности: $S = \lim \{4 V [(1 - \gamma_0(r))/r]\}$

График Гинье: определение радиуса инерции наночастиц

Для самых малых углов справедливо приближение:

$$ln[I(s)] \cong ln[I(0)] - \frac{4\pi^2}{3}R_g^2s^2$$

Линейная аппроксимация позволяет найти: **I(0)** (интенсивность рассеяния в нулевой угол) **R**_g (тангенс угла наклона)

Допустимый диапазон углов: $0 < 2\pi R_g s < 1.3$ для сферической частицы при точности 1-2%

$$R_{g}^{*} = \sqrt{\frac{\sum \frac{q_{i}^{2}I_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{I_{i}^{2} \ln I_{i}}{\sigma_{i}^{2}} - \sum \frac{q_{i}^{2}I_{i}^{2} \ln I_{i}}{\sigma_{i}^{2}} \sum \frac{I_{i}^{2}}{\sigma_{i}^{2}}}{\sum \frac{q_{i}^{4}I_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{I_{i}^{2}}{\sigma_{i}^{2}} - \left(\sum \frac{q_{i}^{2}I_{i}^{2}}{\sigma_{i}^{2}}\right)^{2}}{\sum \frac{q_{i}^{4}I_{i}^{2}}{\sigma_{i}^{2}}} - \frac{I_{i}^{4}I_{i}^{2}}{\sigma_{i}^{2}} \sum \frac{I_{i}^{4}I_{i}^{2}}{\sigma_{i}^{2}} - \frac{I_{i}^{4}I_{i$$

 $q = s / 2\pi$

$$I(s) = \langle I(s) \rangle_{\Omega} = 4\pi \int_{r=0}^{\infty} r^2 \gamma(r) \cdot \frac{\sin(sr)}{sr} dr$$
$$\gamma(r) = \langle P(r) \rangle_{\omega} = \frac{1}{2\pi^2} \int_{s=0}^{\infty} s^2 I(s) \cdot \frac{\sin(sr)}{sr} ds$$

I(s) однозначно определена в обратном пространстве Фурье-преобразованием одномерной функции распределения по расстояниям *p(r)* в прямом пространстве:

$$p(r) = r^2 \cdot \gamma(r)$$

p(*r*) (и, соответственно, *l*(*s*)) однозначно вычисляются для известных структур, что лежит в основе методов определения формы молекул по данным рассеяния

Косвенное Фурье-преобразование: программа 23 GNOM

Представление формы наночастицы в виде мультипольного разложения

Программа SASHA: определение формь 25 белковых молекул в растворе

r I					Ana	lyze Solution	Scatterin	g Automatically	
Style: Frame	Facet	Gouraud	Function:	Show	Hide Delete	Config)	File)	Command $ abla$	Load) (Active $ au$) No 9. shout Quit
Input intens Angular unit Fitting range	Shape determination nput intensity file [.dat]: sacctet ngular units (1-4): 2 itting range (fractional): 1.0							Active structure attributesType:SingleEdges:InvisibleColour:aquamarineHLHSR:EnableVisible:AllTransp.%:25 \checkmark Annotation:7TRANSFORMATION:ManDefResetRotate X: -53 -180 $= 1$ $= 1$ Rotate Y: 54 -180 $= 1$ $= 1$ $= 1$ Rotate Z: 0 -210 $= 1$ $= 1$ $= 1$ Shift X $: 0$ -210 $= 1$ $= 1$ $= 1$ Shift Z $: 0$ $= 315$ $= 1$ $= 1$ $= 1$ Scale (%): 100 10 $= 200$	
Output file [Init. approxi Maximum or Apply the fil Go Sto	.fim]: s mation [der of hi ter: <u>N</u> P)	hout .fim]: .armonics:	4		6		5		Mode: Discrete Kbd Delta (*PI/100): 10 PT MKPlot s, I(s)exp, I(s)calc for shout.flm12-JUN-1996 Wed Jun 12 18;57:00 1996 V 10.5 10.0 9.5 9.0 8.5 8.0 7.5
Reper: 🔽 Vi Length: 20	sible 	MES	SAGE: shou	ut is loac	le d				0.05 0.10 0.15 0.20 0.25 0.30 X

Сормы наночастиц

Структура молекул или частиц моделируется набором плотноупакованных шариков, расположенных внутри области с диаметром равным максимальному размеру частицы. Программа варьирует расположение шариков, минимизируя разницу между экспериментальной кривой рассеяния и рассчитанной от шариковой модели.

Проблемы: неоднозначность и неустойчивость решений

$$p(r) = \frac{r^2}{2\pi^2} \int_0^\infty s^2 I(s) \frac{\sin(sr)}{sr} ds$$

Функция парных расстояний однозначно рассчитывается по

Структурные инварианты:

Радиус инерции R_g, объем частицы V, максимальный размер D_{макс}

однозначно определены формой кривой рассеяния.

Step 0 Temperature = 0.100E-02 Chi= 36.38

Temperature = 0.100E-02 Chi= 37.47 Step 1 -4 001 002 -4.5 -5 -5.5 -6 -6.5 -7 0.020.040.060.08 0.1 0.120.140.160.18 s [1/A] 0

Step 2 Temperature = 0.900E-03 Chi = 31.57

Step 3 Temperature = 0.810E-03 Chi = 28.21

Step 4 Temperature = 0.729E-03 Chi= 26.08

Step 5 Temperature = 0.656E-03 Chi = 23.54

Step 8 Temperature = 0.478E-03 Chi = 18.51

Step 11 Temperature = 0.349E-03 Chi= 13.11

Step 15 Temperature = 0.229E-03 Chi = 8.37

Step 20 Temperature = 0.135E-03 Chi = 5.63

Step 25 Temperature = 0.798E-04 Chi = 3.33

Step 30 Temperature = 0.471E-04 Chi = 1.82

Step 35 Temperature = 0.278E-04 Chi = 1.56

Step 40 Temperature = 0.164E-04 Chi = 1.08

Step 45 Temperature = 0.970E-05 Chi = 1.10

Step 50 Temperature = 0.573E-05 Chi = 1.05

Step 55 Temperature = 0.338E-05 Chi = 1.04

Step 60 Temperature = 0.200E-05 Chi = 1.04

Step 64 Temperature = 0.131E-05 Chi = 1.04

Определение формы молекулы лизоцима врастворе при концентрации 12 мг/мл

Эксперимент и рассеяние от модели

разброса и наиболее вероятная область решения

Одно из

решений

Определение различий формы молекул иммуноглобулина 30 М (IgM) и ревматоидного фактора IgM-RF по данным малоуглового рассеяния от раствора.

Вывод: найденная модель IgM-RF отличается от структуры IgM асимметрией F(ab)₂ областей пентамера (обведены овалами): одно из Fab плеч в каждой паре неполношенно (работа по уточнению продолжается)

Анализ центральной части малоуглового рассеяния 31 от каррагинан-ПАВ систем – восстановление структуры нанокластеров

Стерео *ab initio* реконструкция 1-(вверху) и к- (внизу) каррагинан/СРС кристаллитов

Расчет модели структуры с помощью программы DAMMIN показал, что:

Полимерные цепи каррагинанов
образуют супер-спиральные структуры,
стабилизированные бислоями СРС.

 Бислои расположены перпендикулярно оси суперспирали и это обеспечивает квази-ламеллярный порядок упаковки вдоль оси полого цилиндра, стенки которого образованы бислоями СРС.

1-каррагинан

к - каррагинан

"noition shape determination"

- •DAMMIN: Svergun, D.I. (1999) *Biophys. J.* **76**, 2879-2886
- •GASBOR: Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. (2001) *Biophys. J.* **80**, 2946-2953.
- •SASHA: Svergun, D.I., Volkov V.V., Kozin M.B. *et.al.* (1997) *J. Appl. Cryst.* **30**, 798-802.

Нейтронное рассеяние: вариация контраста

Рассеивающий контраст

Hybrid 70S with 23S RNA deuterated, HH30+HD50

Protonated 70S ribosome, HH30+HH50

0% D₂O

Нейтронное рассеяние от растворов рибосомы 70S: вариация контраста путем частицного дейтерирования

Структура рибосомы 70S и 50S *E.coli* в растворе по 36 данным рентгеновского и нейтронного малоуглового рассеяния

D.I.Svergun, N.Burkhardt, J.Skov Pedersen, M.H.J. Koch, V.V.Volkov, M.B.Kozin, et al. J. Mol. Biol. (1997), 271, 588-601 Шариковая модель субъединицы 50S рибосомы 70S *E.coli* с разрешением 1 nm по данным МУР (Svergun & Nierhaus, May 2000) Для сравнения: кристаллическая модель субъединицы 50S *H.marismortui* (Steitz group, August 2000)

Ensemble optimization Method (EOM)

Структурная организация mouse proNGF

The fraction of compact models in the optimized ensemble (with Rg between 3.0 and 3.2 nm) is about 70 %, whereas the fraction of extended models (with Rg between 3.3 and 3.8 nm) is less than 30%.

F. Paoletti, S. Covaceuszach, P.V. Konarev, E. Schwarz, D.I. Svergun, A. Cattaneo, & D. Lamba (2008) *Proteins* submitted

Мәтод малоуглового рассеяния наиболее эффективен в сочетании с другими методами исследования структуры и обладает уникальными возможностями

Благодарю за внимание!

Общая схема интерпретации данных малоуглового эксперимента от растворов белковых структур

Jacques & Trewhella (2010) "Small-angle Scattering for Structural Biology; Expanding the Frontier While Avoiding the Pitfalls," *Protein Science 19*, 642-657 Основные шаги структурной интерпретации данных МУР

построение математической модели структуры (параметризация),

вычисление теоретической интенсивности *I(s)* рассеяния от модели (прямое моделирование), ____

сравнение ее с экспериментальными данными (вычисление критерия невязки),

коррекция параметров модели исходя из величины невязки и тенденции ее изменения (минимизация невязки) и переход к следующей итерации прямого моделирования. Останов по достижению минимального значения или выполнения других (совокупности) критериев качества решения.

S

Проблемы, возникающих при интерпретации данных экспериментов

- Основная проблема опять заключается в формализации оценок ошибок решения. Необходимо сформулировать:
- 1. Что есть форма наночастицы
- 2. Что есть ошибка (отклонение в пропорциях формы, в расстоянии от центра до точки на поверхности, ... ?
- З. Как устанавливать связь между ошибками эксперимента (шумы, нарушения монодисперсности, …) и ошибками решения?
 Эта связь нелинейна, что затрудняет установление аналитических зависимостей.
- На практике проводят анализ разброса независимо полученных решений, устанавливают область, в которую вписываются все найденные формы, ограничивают область заданного объема с максимальной плотностью перекрытия решений (область наиболее вероятного по ограниченной выборке решения) и – финально – уточняют форму этой области, задавая в качестве дополнительного штрафа величину уклонения от нее.

Варьирование контраста: рентгеновское рассеяние и рассеяние нейтронов

Рентгеновские лучи Влияние сахарозы или соли

РНК, 550 e/nm³

60% сахарозы, 430 e/nm³

белок, 410 е/nm³

 H_2O , 344 e/nm³

нейтроны Изотопное замещение H/D

D-белки, "130%" D₂O D-PHK, "120%" D₂O

 $D_2O, 6.38 \times 10^{10} \text{ cm}^{-2}$

H-PHK, 70% D₂O

Н-белки, 40% D₂O

H₂O, -0.59×10¹⁰ cm⁻²

Рассеяние от систем с различной кончилерание от систем с разонние в мончиле в мактурной организацией мончение в мактурной корнанизацией в мактурной корнанизацией в мактурной корнанизацией в мактурной в

Радиус инерции, максимальный размер, форма наночастиц Распределение по размерам, распределение хорд, 20 площадь поверхности раздела, и толщина переходного слоя

 2θ

Монодисперсные системы: молекулы белков в растворе, наночастицы металлов, кластеры самоорганизующихся полимеров, ...

Полидисперсные системы: пористые, наночастицы в матрице, сплавы, стекла, ...

Частично ориентированные системы: жидкие кристаллы, кристаллические полимеры, глины, присадки, ... Дифракционная часть картины: радиус корреляции, размер кристаллита, межплоскостное расстояние.

Малоугловая часть: распределения по размерам неоднородностей

Применение малоуглового рассеяния

Монодисперсные системы: растворы белков, наночастицы

определение размеров, формы частиц и деталей их внутренней структуры до разрешения 0.5-1 нм.

Коррекция известных кристаллических и электронномикроскопических структур

Определение неизвестных фрагментов структуры

Позиционирование доменов и фрагментов с известной структурой Полидисперсные системы: смеси белков, наноэмульсии, наночастицы

Определение структуры компонентов (формфакторов, структурных факторов), параметров полидисперсности и относительных вкладов компонентов Произвольные конденсированные системы: нанокомпозиты, гели, аэрозоли, полимеры, сплавы, мезопористые материалы и т.п.

Прямое моделирование внутренней структуры неупорядоченных или частично упорядоченных многофазных систем с помощью малых объемных элементов (молекулярномассовое распределение, доменная структура, межфазные границы), параметры упаковки неоднородностей, фрактальная размерность и т.д.

Информативность данных малоуглового рассеяния

Вывод из теоремы Котельникова-Шеннона:

число независимых параметров,

описывающих кривую рассеяния, равен

 $N_s = s_{max} D_{max} / \pi$,

где *D_{тах}* макимальный размер частицы.

N_s определяет максимально допустимый интервал угловых отсчетов в малоугловом эксперименте:

Следовательно, структура рассеивающей частицы должна быть параметризована небольщим количеством параметров, что ограничивает пространственное разрешение.
Основная литература по малоугловому рассеянию:

- Д. И. Свергун, Л. А. Фейгин. "Рентгеновское и нейтронное малоугловое рассеяние". Москва, "Наука", 1986, 279с.
- 2. А. Н. Бекренев, Л. И. Миркин. «Малоугловая рентгенография деформации и разрушения материалов». Москва: МГУ, 1991. 247с.
- 3. O. Glatter, O. Kratky. "Small-Angle X-ray Scattering". Academic Press Inc. (London) Ltd, 1982, 515p.
- 4. A. Guinier and G. Fournet. "Small-Angle Scattering of X_Rays". John Wiley & Sons, Inc. (New York), 1955, 268p.
- 5. Б. К. Вайнштейн. Дифракция рентгеновских лучей на цепных молекулах. Москва, Издательство АН СССР, 1963г., 372с.

Indirect Fourier Transform in GNOM

$$J(s) = \int_{D\min}^{D\max} K(s,r)p(r)dr$$

The operator **K(s,r)** includes the Fourier transform and smearing effects

This is a typical ill-posed problem, *i.e.* small errors in J(s) may lead to large errors in p(r).

Tikhonov's regularization method is used in GNOM to solve this problem

$$T_{\alpha}[p] = \left\| J - Kp \right\|_{J}^{2} + \alpha \Omega(p)$$

 $\Omega(p)$ – a stabilizer that take into account the smoothness, nonnegativity of p(r) and the systematic deviations between experimental J(s) and the restored function J(α ,s)=Kp (α)

D.I. Svergun (1992) JAC, 25, 495-503

Ab initio shape determination

- •DAMMIN: Svergun, D.I. (1999) *Biophys. J.* **76**, 2879-2886
- •GASBOR: Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. (2001) *Biophys. J.* **80**, 2946-2953.
- •SASHA: Svergun, D.I., Volkov V.V., Kozin M.B. *et.al.* (1997) *J. Appl. Cryst.* **30**, 798-802.

Определение формы молекул белков в растворе по данным МУР с использованием дополнительной информации: исследование иммуноглобулина М и ревматоидного фактора.

Форма молекулы иммуноглобулина М (эксперимент и теория - график (б))

Форма молекулы ревматоидного фактора (эксперимент и теория - график (с)) Crystallography

V. V. Volkov*, R. L. Kayushina*, V. A. Lapuk**, et al. *Crystallography Reports, Vol. 48, No. 1, 2003, pp. 98–105.*

Lymazine synthase data analysis

Cryo-EM micrographs

The system was successfully described by 5 components: complete and incomplete small capsids (T=1) complete and incomplete big capsids (T=3,4) free facets.

The data show that multiple assembly forms are a general feature of lumazine synthases.

X.Zhang, P.Konarev, M.Petouhkov, D.Svergun et.al. JMB (2006) V. 362 p. 753-770

EOM – Ensemble optimization method

P. Bernado, E. Mylonas, M. V. Petoukhov, M. Blackledge & D. I. Svergun (2007) JACS, 129, 5656-5664

Contrast variation in biomolecules can take advantage of the fortuitous fact that the major bio-molecular constituents of have mean scattering length densities that are distinct and lie between the values for pure D_2O and pure H₂O

Use SASREF7 to do rigid body refinement of the components against the scattering data (if you

have pdb files for components)

Neutrons

- Non-ionizing radiation
 - Penetrating
 - Wavelength and energies available that are suitable for probing structures with dimensions 1-1000s Å
 - Coherent scattering lengths that vary randomly with atomic weight and large isotope effect for hydrogen contrast variation
 - Large incoherent scattering cross-section for ¹H is a source of noise in small-angle scattering
 - Interact weakly with matter and are difficult to produce and detect – therefore should only be used when they provide information that cannot be otherwise obtained.

Assessing the quality of small-angle scattering results

- > Are there instrumental effects unaccounted for?
- > Are the scattering particles mono-disperse and identical or is there a conformational ensemble?
- > Do you have dilute solution conditions?
- > Do the data show the expected Guinier and Porod behavior?
- > Is the P(r) "well-behaved?"
- > Are background subtractions accurate?
- > Have standards been measured?
- > How well characterized is the sample (purity, concentration)
- > Are errors appropriately handled can you rely on χ^2 ?

P(r) provides a real space interpretation of I(q)

P(r) is calculated as the inverse Fourier transform of I(q)and yields the probable frequency of inter-atomic distances within the scattering particle.

Svergun, D. I. & Koch, M. H. J. (2003). Small-angle scattering studies of biological macromolecules in solution. *Rep. Prog. Phys.* 66, 1735-1782