Измерение времени жизни нейтрона на установке ПИЯФ в ИЛЛ, итоги и перспективы

А.К. Фомин

Руководитель проекта: А.П. Серебров

ПИЯФ НИЦ КИ, Гатчина, Россия

РНСИ-КС-2014 Санкт-Петербург, Старый Петергоф 27–31 октября 2014 г.

Эксперимент ПИЯФ с гравитационной ловушкой A.Serebrov et al., Phys Lett B 605, (2005) 72-78 : 878.5 ± 0.8 s

2002-2004 (PNPI-JINR-ILL), ILL reactor, Grenoble

Экстраполяция ко времени жизни нейтрона

The most close extrapolation to neutron lifetime (5 s only) is reached in this experiment!

Метод измерений с гравитационной ловушкой УХН

Filling of the trap with UCN: $\theta = 180^{\circ}$.

Проблема измерений времени жизни нейтрона в 2004-2007

Поиск систематики в других экспериментах

ISSN 0021-3640, JETP Letters, 2009, Vol. 90, No. 8, pp. 555-559. © Pleiades Publishing, Ltd., 2009.

Monte Carlo Simulation of Quasi-Elastic Scattering and Above-Barrier Neutrons in the Neutron Lifetime Experiment MAMBO I[¶]

A. P. Serebrov and A. K. Fomin

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad region, 188300 Russia

ISSN 0021-3640, JETP Letters, 2010, Vol. 92, No. 1, pp. 40-45. © Pleiades Publishing, Inc., 2010.

Detailed Analysis and Monte Carlo Simulation of the Neutron Lifetime Experiment[¶]

A. K. Fomin and A. P. Serebrov

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad region, 188300 Russia

PHYSICAL REVIEW C 82, 035501 (2010)

Neutron lifetime from a new evaluation of ultracold neutron storage experiments

A. P. Serebrov^{*} and A. K. Fomin

Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, RU-188300 Leningrad, Russia 6

Проблема измерений времени жизни нейтрона в 2010

PDG 2013

VALUE (s)		DOCUMENT ID		TECN	COMMENT
880.0 \pm 0.9 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.					
$881.6 \pm 0.8 \pm 1.9$	11	ARZUMANOV	12	CNTR	UCN double bottle
$882.5 \pm 1.4 \pm 1.5$	12	STEYERL	12	CNTR	UCN material bottle
$880.7 \pm 1.3 \pm 1.2$		PICHLMAIER	10	CNTR	UCN material bottle
$886.3 \pm 1.2 \pm 3.2$		NICO	05	CNTR	In-beam <i>n</i> , trapped <i>p</i>
$878.5 \pm 0.7 \pm 0.3$		SEREBROV	05	CNTR	UCN gravitational trap
$889.2 \pm 3.0 \pm 3.8$		BYRNE	96	CNTR	Penning trap
882.6 ± 2.7	13	MAMPE	93	CNTR	UCN material bottle
 ● ● We do not use the following data for averages, fits, limits, etc. ● ● 					
$886.8 \pm 1.2 \pm 3.2$		DEWEY	03	CNTR	See NICO 05
$885.4 \pm 0.9 \pm 0.4$		ARZUMANOV	00	CNTR	See ARZUMANOV 12
$888.4 \pm \ 3.1 \pm \ 1.1$	14	NESVIZHEV	92	CNTR	UCN material bottle
888.4 ± 2.9		ALFIMENKOV	90	CNTR	See NESVIZHEVSKII 92
$893.6 \pm \ 3.8 \pm \ 3.7$		BYRNE	90	CNTR	See BYRNE 96
$878 \pm 27 \pm 14$		KOSSAKOW	89	TPC	Pulsed beam
887.6± 3.0		MAMPE	89	CNTR	See STEYERL 12
877 ± 10		PAUL	89	CNTR	Magnetic storage ring
$876 \pm 10 \pm 19$		LAST	88	SPEC	Pulsed beam
891 ± 9		SPIVAK	88	CNTR	Beam
903 ±13	15	KOSVINTSEV	86	CNTR	UCN material bottle
937 ± 18		BYRNE	80	CNTR	
875 ± 95		KOSVINTSEV	80	CNTR	
881 ± 8		BONDAREN	78	CNTR	See SPIVAK 88
918 ± 14		CHRISTENSEN	72	CNTR	

Новое среднемировое значение времени жизни нейтрона подтверждает справедливость Стандартной модели

Dependence of the CKM matrix element $|V_{ud}|$ on the values of the neutron lifetime and the axial coupling constant g_A . (1) neutron lifetime, PDG 2006; (2) neutron lifetime, this talk; (3) neutron β -asymmetry, Perkeo 2007; (4) neutron β -decay, this article + Perkeo 2007; (5) unitarity; (6) 0⁺ \rightarrow 0⁺ nuclear transitions; (7) neutron β -decay, PDG 2006 + Perkeo 2007.

Новое среднемировое значение времени жизни нейтрона лучше для модели Большого взрыва G. J. Mathews, T. Kajino, T. Shima, Phys. Rev. D 71, 021302(R) (2005)

 $\Delta \tau_n = 1\% \quad \rightarrow \quad \Delta Y = 0.75\% \ (\pm 0.61\%)$ $\Delta \tau_n = 1\% \quad \rightarrow \quad \Delta \eta = 17\% \ (\pm 3.3\%)$

New τ_n =(878.5±0.8) s confirms n_b/n_γ from CMB.

Реакторная антинейтринная аномалия

G. Mention et al., Phys. Rev. D83, 073006, 2011

Расхождение результатов измерения времени жизни нейтрона в пучковых экспериментах и экспериментах с хранением

A.P. Serebrov and A.K. Fomin / Physics Procedia 17 (2011) 199–205

 $\Delta \tau_n = 9.8(2.96) \text{ s} (3.3\sigma)$

Gravitrap → **Big Gravitrap**

878.5 0.7_{stat} 0.3_{sys} s

Phys. Lett. B 605, 72 (2005) Phys. Rev. C 78, 035505 (2008) Increasing of "wide" trap volume is **5.3**. Increasing of "narrow" trap volume is **18**.

- 1. Statistical accuracy 0.7 s \rightarrow 0.2 s;
- 2. Vacuum correction 0.4 s \rightarrow 0.04 s;
- **3**. Measurement in two positions without disassembling;
- 4. Improvement of loss factor ? $2 \cdot 10^{-6} \rightarrow 10^{-6}$?
- 5. Expected accuracy: statistical ~ 0.2 s

systematical < 0.1 s

Русские традиции

Царь-колокол

Царь-пушка

Царь-ловушка

Схема установки с большой гравитационной ловушкой

Дизайн установки с большой гравитационной ловушкой

Временная диаграмма счета детектора

Спектры УХН при сливах

Экстраполяция ко времени жизни нейтрона

Изготовление установки в ПИЯФ

Изготовление установки в ПИЯФ

Расположение установки на пучке PF2 MAM в ILL

Заключение

- Самое точное измерение времени жизни нейтрона произведено в эксперименте ПИЯФ с гравитационной ловушкой УХН 878.5 ± 0.8 с.
- Произведено моделирование экспериментов МАМВО I и Курчатовского института. Получены поправки около -6 с в обоих экспериментах. В дальнейшем обе экспериментальные группы поправили свои результаты. Новое среднемировое значение PDG 2013 для времени жизни нейтрона определяется результатом ПИЯФ и составляет 880.0 ± 0.9 с.
- 3. Установка ПИЯФ с большой гравитационной ловушкой УХН изготовлена и установлена на пучке в ILL.