НИЦ «КУРЧАТОВСКИЙ ИНСТИТУТ»

ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Б.П. КОНСТАНТИНОВА

ИСТОЧНИКИ ХОЛОДНЫХ НЕЙТРОНОВ РЕАКТОРА ПИК:

перспективы создания и развития

МИТЮХЛЯЕВ Виктор Алексеевич

27-31 октября 2014 года

Рабочая группа по источникам холодных нейтронов

Состав –

1.В.А. Митюхляев – руководитель группы, ОНИ ПИЯФ НИЦ КИ

2.М.С. Онегин – ОНИ ПИЯФ НИЦ КИ

3.В.В. Несвижевский - ИЛЛ, Франция

4.F. Mezei - ESS, Швеция

5.К. Батьков – ESS, Швеция

6. Tamas Grosz – BNC, Венгрия

7.А. Ю. Музычка – ОИЯИ, Дубна

8.С.А. Куликов - ОИЯИ, Дубна

+ группа ИХН ОНИ ПИЯФ НИЦ КИ (9 чел.)

Цель – создание источников холодных нейтронов на каналах ГЭК-3, ГЭК-2 и ГЭК-4-4' и УХН

FRM-II (20 МВт)

ПИК (100 МВт)

33 станции

Instrument	Description	Neutrons	Status	Operated by	Funding
ANTARES	Radiography and tomography	cold	operation	тим	тим
BIODIFF	Diffractometer for large unit cells	cold	operation	TUM, JCNS	TUM, FZJ
DNS	Diffuse scattering spectrometer	cold	operation	JCNS	FZJ
HEIDI	Single crystal diffractometer	hot	operation	RWTH Aachen	FZJ
J-NSE	Spin-echo spectrometer	cold	operation	JCNS	FZJ
KOMPASS	Three axes spectrometer	cold	construction	Uni Köln, TUM	BMBF
KWS-1	Small angle scattering	cold	operation	JCNS	FZJ
KWS-2	Small angle scattering	cold	operation	JCNS	FZJ
KWS-3	Very small angle scattering	cold	operation	JCNS	FZJ
MARIA	Magnetic reflectometer	cold	operation	JCNS	FZJ
MEPHISTO	Facility for particle physics, PERC	cold	reconstruction	тим	TUM, DFG
MIRA	Multipurpose instrument	cold	operation	тим	тим
MEDAPP	Medical irradiation treatment	fast	operation	тим	тим
NECTAR	Radiography and tomography	fast	operation	тим	тим
NEPOMUC	Positron source, CDBS, PAES, PLEPS, SPM	-	operation	TUM, UniBw München	TUM, BMBF
NREX	Reflectometer with X-ray option	cold	operation	MPI Stuttgart	MPG
PANDA	Three axes spectrometer	cold	operation	TU Dresden, JCNS	FZJ

Instrument	Description	Neutrons	Status	Operated by	Funding
PGAA	Prompt gamma activation analysis	cold	operation	Uni Köln, PSI	тим
PUMA	Three axes spectrometer	thermal	operation	Uni Göttingen, TUM	тим
POLI	Single-crystal diffractometer polarized neutrons	hot	operation	RWTH Aachen	BMBF, FZJ
POWTEX	Time-of-flight diffractometer	thermal	construction	RWTH Aachen, Uni Göttingen, JCNS	BMBF, FZJ
REFSANS	Reflectometer	cold	operation	GEMS	HZG
RESEDA	Resonance spin-echo spectrometer	cold	operation	TUM	тим
RESI	Single crystal diffractometer	thermal	operation	LMU	тим
SANS-1	Small angle scattering	cold	operation	TUM, GEMS	TUM, HZG
SAPHIR	Six anvil press for radiography and diffraction	thermal	construction	BGI	BMBF
SPHERES	Backscattering spectrometer	cold	operation	JCNS	FZJ
SPODI	Powder diffractometer	thermal	operation	кіт	тим
STRESS-SPEC	Materials science diffractometer	thermal	operation	TUM, TU Clausthal, GEMS	TUM, HZG
TOFTOF	Time-of-flight spectrometer	cold	operation	TUM	тим
TOPAS	Time-of-flight spectrometer	thermal	construction	JCNS	FZJ
TRISP	Three axes spin-echo spectrometer	thermal	operation	MPI Stuttgart	MPG
UCN	Ultra cold neutron source, EDM	ultra-cold	construction	тим	TUM, DFG

Расположение ИХН ГЭК-3 на реакторе ПИК (уровень

Водород или дейтерий?

H2

Оптимизация расположения ИХН в реакторе

Отношение плотности потока ХН к тепловой нагрузке

Нейтронно-физические расчеты

Объем сферы, литры	Внутренний	і диаметр	канала, мм
10		284	
20		352	
30		400	

Яркость для различных объемов ИХН

V, л

Камера ИХН ГЭК-3 с вытеснителем

S — толщина стенок оболочек S* — толщина в местах сварки

Спектральная яркость ИХН, Gain и эффективность отражателя

Влияние верхнего нейтронного отражателя на яркость камеры

Заполнение	Материал оболочки	Яркость, 10 ¹² см ⁻² с ⁻¹ ср ⁻¹	Выигрыш, %	Энерговыде ление, kW
-	-	6,5	-	-
D ₂ O	Алюминий	7,46	14,8	21,8
H ₂ O	Алюминий	6,93	6,6	11,0
H ₂ O	Сталь	6,56	0,9	19,0
	HJK-			

Спектральная яркость НЭК-1 в 2 раза хуже яркости в ГЭК-3

Относительные плотности потока нейтронов в каналах ГЭК-4-4' и ГЭК-6 для различных моделей нейтронного отражателя

Канал	D₂O отража тель	Н₂О отражатель, вариант 1	Н₂О отражатель, вариант 2	Без отражателя
ГЭК-4	1,00	0,98	0,98	0,97
НЭК-6, Z= 0 см	1,00	1,00	0,99	0,98
НЭК-6, Z= 72,5 см	1,00	0,92	0,92	1,005

вариант 1- тяжеловодный отражатель залит легкой водой вариант 2- легководный отражатель поднят над камерой на 500 мм от центра камеры.

Энерговыделение

		ИХН Корпус (AI)	ИХН LD ₂	Вытес- нитель	Трубы (AI) Z<100 см	Труба центр. (AI)	Трубы (LD ₂) Z<100 см
<i>т</i> , г		3544	4182	640	2273	232	258
∆ <i>Е</i> , Вт	n+γ	2001(15)	1882(15)	323(5)	451(7)	130(2)	43(1)
	β	1128(6)		251(3)	169(2)	110(1)	
Суммарное		3129(21)	1882(15)	574(8)	620(9)	240(3)	43(1)
Общее, Вт				6488	3		
∆ <i>Е</i> , Вт/г	n+γ	0,565	0,450	0,505	0,199	0,560	0,167
	β	0,318		0,392	0,074	0,474	
Суммарное		0,883	0,450	0,897	0,263	1,034	0,167

Энерговыделение в ИХН с лекговодным отражателем нейтронов

6165 Вт - пусковая зона реактора 5590 Вт - полная загрузка зоны реактора 3220 Вт – теплый режим

Старый вариант ИХН – энерговыделение 4,0 - 5,0 кВт

Теплофизика

Параметры термосифона

Полный расход Не, г/с	Расход D ₂ , г/с	Макси- мальная температ ура D ₂ , К	Средняя темпера- тура D ₂ в камере, К	Мини- мальная темпера- тура D ₂ , К	Темпера- тура Не на входе	Минималь- ное давление в D ₂ , бар
100+ 100	113	23,3	21,2	19,5	16,0	1,4
100+ 100	116	26,4	24,4	22,9	19,0	2,9

Т_{кип}= 25-26 К при давлении насыщения 1,45-1,9 бар

I – Опорная труба ИХН
1 – Бак тяжеловодного отражателя
2 – Патрубок ПИК.00.020
3 – Катушка переходная

- II Вакуумный контейнер
- III Термосифон

Расположение ИХН на реакторе

- 1 Корпус реактора нижний
- 2 Корпус реактора верхний
- 3 Бак тяжеловодного отражателя
- 4 Железоводная защита
- 5 Стальная облицовка легководного бассейна
- 6 Биологическая защита
- 7 Трубопровод 1-го контура
- 8 ГЭК 2
- 9 ГЭК 3
- 10 ГЭК 4-4'
- 11 Шибера
- 12 Кожуха приводов регулирующих стержней СУЗ
- 13 Кожуха ионизационных ампул СУЗ
- 14 ЦЭК
- 15 ВЭК 2
- 16 Патрубок ПИК.00.020
- 17 Катушка переходная
- 18 Вакуумный контейнер ИХН
- 19 Термосифон

Трубопроводы внешних систем ИХН в шахте аппарата

- 1 Патрубок ПИК.00.020
- 2 Площадка приводов (уровень +12080)
- 3 Площадка монтажная (уровень +9000)
- 4 Путь рельсовый
- 5 Траверса опорная
- 6 Трубопровод дейтериевый
- 7 Трубопровод вакуумный
- 8 Трубопроводы гелиевые криогенные входные
- 9 Трубопровод гелиевый криогенный выходной

Здание 100Е (компрессорная станция)

Здание 100E 2013 год

График создания комплекса ИХН ГЭК-3

Evolution of CNS Layout at PIK reactor (cross section level +2100) 1989-2014 years

F1 - Flux density of fast neutrons E > 5 keV.

F2 - Flux density of epithermal neutrons 5 keV > E > 0.6 eV.

F3 - Flux density of thermal neutrons E < 0.6 eV.

Models for neutron calculation

Long HEC-2, 314 mm

Short HEC-2, 364 mm

CNS Neutron performance

	Neutron be	am	Brightr n cm-2 –	ness s str A	Integral flux reactor fac n cm-2	density at e,	
	HEC-2 (dia. 364 mm) HEC-2 (dia. 314 mm) HEC-3 HEC-4 (without displacer) HEC-2 364 mm 20,9 l		mm) 1.10 *10 ¹³		1.7*10 ¹¹		
			1.53*10 ¹³		1.77*10 ¹¹		
			7.2*10 ¹²		6.0*10 ¹⁰		
			7.2*10 ¹²		7.6*10 ¹⁰ 4.6*10 ¹⁰		
			HEC -2 314 mm 13 I	HEC -3 24 I	HEC - 4 6 I In central plane	HEC - 4 14 I 450 mm far	
Total, W 6314		9062	5585	4921	4936		
Requested cryogenic capacity, W		7800	10500	7100	6500	6500	

CNS brightness in different neutron channels

s str A

λ, Α

CNS comparative parameters

Параметр	ANSTO	PNPI	PNPI	PNPI	ILL (V / H)
Reactor power, MW	20	100 (ver. ГЭК-3)	100 (hor.ГЭК-4)	100 (hor. ГЭК-2)	57
<i>Thermal neutron flux at CNS location,</i> n cm ⁻² c ⁻¹	1,65*10 ¹⁴	4,0 10 ¹⁴	6,0 10 ¹⁴	5,0 10 ¹⁴	4,6x10 ¹⁴ / 8x10 ¹⁴
Cold neutron flux at reactor face, $\lambda > 4$ Å, n cm ⁻² c ⁻¹	(1,8-2,5) 10 ¹⁰	6,0 10 ¹⁰	7,6 10 ¹⁰	1,7 10 ¹¹	~10 ¹⁰ /4×10 ¹⁰
Cold neutron flux at neutron guide hall, $\lambda > 4$ Å, n cm ⁻² c ⁻¹	6,4 10 ⁹	≈10 ¹⁰	>10 ¹⁰	> 10 ¹⁰	5,4 10⁸ , (H18) 5,4 10⁹ , (H17) 5,0 10 ⁶ , (H14)
Moderator	LD ₂	LD_2	LD ₂	LD ₂	LD_2
Moderator Temperature, K	23	19,5-25	23	23	25/25
Moderator chamber volume, I	20	24	14	20	20/6
Total heat load, kW	4-5	6,5-7,1	6	7,8	6/3
CNS standby mode	yes	yes	yes	yes	no

Плоский ИХН на пара водороде

ИСТОЧНИК УХН НА ВЫВЕДЕННОМ ПУЧКЕ ТЕПЛОВЫХ НЕЙТРОНОВ

Плотность УХН достигает 10⁵ см⁻³ и скорость генерации УХН по крайней мере 10⁷ с⁻¹

Спасибо за внимание!!!!