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The process under study Is random walk in disordered meduim.
It Is managed by magnetic dipole-dipole interactions only.

09(**F)/g(°Li) ~6.5, g(**F)/g(**"Ag) ~45

Examples:
1) nuclei °Li in the single crystal 'Li®F,
2) muclei ""Ag in the single crystal 'WAg”F. plaze
Experiment; *Li-°Li in the single crystal 'Li"F, /ML

(o(*Li) - g(°Li))le(°Li) = 0.00363
3-NMR e N7

Polarized neutrons - polarized f-active muclei (f-muclei): Vo
i) e 1= 0, pl=0)% 1~ 105 gHyT /:ﬁ
Angular distribution of f-radiation . p-detectors N
W(8.1) o« 1+a+p(r) » cosd. Measurable value:

_ M3=0.0)-N=r.1) . N B
() = oy o () la] #0.1, T,,,=0.84s.




QP —_—

= oy LD
/ 2 3

o
; o

9

4
/

-

__4—'

~[— / 10
-\._\__\-h -_'___'F"'._\__ .llll.

- .
e i

|

—— / f

==M¥—-====

ﬁx HH‘%O

=
-"-FF

Layout of the neutron beta-NMR spectrometer (ITEP, Moscow). It includes a
unit for obtaining polarized neutrons (1, 3, 6 - collimators for neutrons,

2 - neutron-polarizer mirror, 4 - polarized- -neutron-beam chopper, 5 - spin
flipper for reorienting the polarlzatlon of the neutron beam incident on the
sample, 10 - analyzer mirror, and 11 - neutron detector) and a unit for
measuring the asymmetry of the emission of electrons from the decay of beta-
nuclei (7 - electromagnet, 8 sample under study, and 9 scintillation telescope
counters for detecting electrons from the decay process)



*Li-°Li system, characteristics: random distribution of nuclei °Li in the
crystal, impurity concentration ¢<70%.

Naive expectation for "Li depolarization kinetics is  p(t)=exp(-wi).
Foerster decay: if the polarization leaves the B-nucle1 only, then

p(t)=(exp(-wt) =exp(-(f"").
Actual evolution.

Very short time: _/2, t<T("Li), byt<<I,

b, — dipole interaction between nearest L1 nuclet,
z — effective coordination number.

Short time: - [-pt)<<I,

l — polarization transfer rate between nearest L1 nucles,

Intermediate time: _ [i<s, . 407 v,

2 . . . . -
¢ vy — polarization transfer rate at average distance 7.~ ¢

Long time asymptotics: - (230, diffusion behavior.

1/3



Spin dynamics.

Single crystal LiF, <0210 _ (00563,

2(®Li)

Hoy = 200G < flip-flop ®Li-°Li has the same speed as flip-flop
°1.1-°L1. other cross-relaxation transitions are forbidden.

op; )
p{] - _Z ViiDio = ViiPjo): Piolt = 0) = dio,

Piolt (I (r ) — quantum statistical average value of the
z-cemponent (polarization) of the i-th nucleus, placed at r;
(i =0+« %L1 andi + 0 < °Li). The rates of polarization transfer:

2 2 7 2
L £ .,0 1-3cos-8; 0 _ 7S5+l gigiPn \°
Er= 8+ 1 =60, E=1I+1)/[S(S+1))] =3,

I=1°Li) =2, S=1I°Li) = 1, g; — g-factor, B, — nuclear magneton,
0;; 1s the angle between Hy and r; = r; —r;,
d=2.0136- ﬁ A 1s minimal Li-Li distance.
w;; 1s difference of the Larmor frequencies.




Basic approximation:
gi(®) ~ exp(—0?/(2M))/(2rM)V2, M = 2M,,
M, — second moment of the *L.1 NMR line. This
appmximﬂtiﬂn 1s correct qualitatively at least for @ < 2M,. As
a result v;; % have two values only:

Vi = Vo «H» w; = 0 <> transfer between °Li1 spins, and

vy = V1 <> @5 = A <> transfer between L1 and °Li.

The approximation will be improved later.

The way to ap 2 = = —2.(Viipio — vypjo) 1s long and complex,

but disorder 1s 1’mt important here and standard small parameters
were utilized: z¢?voT> < 1: zc*vor. < 1. T3 1s phase
relaxation time for °L1, 7. 1s flip-flop time for surrounding spins
"L1and YF, and zc?v, 1s estimation of the main process rate.

Nontrivial condition z > 1 should be fulfilled as well. 1f spins
I; > 1. Expected accuracy of the Eq.(1) 1s about 1%.

Roughly speaking the way 1s similar to derivation of
hydrodynamics from quantum mechanics via Boltzmann
equation.




At next step we should solve the equations

{’)pm ; Y ) Y . )
5% Z}_ \VjiPio — VijPj0), piolt = 0) = 00, (1)

and average the solution ppg(?) over random distribution of spin posi-
tions {r,|.

The situation 1s similar to derivation of the hydrodynamics equa-
tions. We consider Eq.(1) as microdynamical one and we go to cor-
responding macrodynamics for polarization Py(t) of arbitrary lattice
site X, 1f the site 0 was polarized itially. Observable polarization of
®Li will be described by Puo(t) = (poo(t)).

The problem has no analytical solution now. but the propagator
Po(t) can be expanded in terms of ¢”. For Fy(t) real parameter of
the expansion is (3t)'/? instead of ¢. In order to calculate the term
o " the solutions of Eq.(1) for £ < m spins are necessary, while
mnitial system (1) 1s written for infinite number of spins.

All existing analytical information was obtained by this method.

More quantitative results were received by numerical stmulations.



Wy the problem is very interesting?

1) It has very simple form and challenge to an ntellectual duel.

2) It has many applications in physics, chemistry and biology.

3) Being written 1n universal theoretical language - path inte-
grals form - 1t produces very complex field and superfield theories.
Any progress 1n solution of the problem should be transformed nto
progress 1 solutions of these universal problems. All story of theo-
retical physics of 20 century can be considered as search of ways to
solve the problems of field theories.



The path integrals:
q(1)=y

Polt) = (), = [ Dp(r)Da(r) exp(ilp.q)).

q(0)=x

1
¥ — drA-(q(t).p(r
I[}Lq]=ijltpdq+nj‘d5z<e rjﬂ Hlate-p }Jl>1

A7(q.p) = vg(1 —e™=Y) vyq o [z - ¢
The representation 1s sumilar to, but more complex than path mntegrals

in famous polaron problems, where the action (for partition function
at temperature 7) 1s

o L dx VT exp(—|f — u|)
S|x] > ja df( df) —a G dtdu () —x(0)

Supertfield path integral representations for Pyy(f) = (f’xﬁ-ﬁ exist as
well.




Example of superfield representation

P(2)=] ; drexp(-ANP, (1) = (A+4)_.

Bose-fields a_ and a_, Fermi-fields &, and o_,

superfields @, ={a_.a_} and ¢, ={a_.a}.
$0p=" (a;0 a,+a 0 a,)
P(A)= j sasa”dase ] exp(—1(¢.9)).

I(g".g)=Ag g+ (1-exp(-¢"4'¢)).

P _EI
A =v &6 —v O V _~‘x—v‘
Xy Xy v

Xy Xz XZ ZV°

Divergencies are seen clearly. but the theory exists as expansion m powers of ¢” at
least.

These representations demonstrate the relation of the RWDM to general problems of
the modern field theory. but they are too complex. and real calculations now are

: : : 12 12y p |
based on concentration expansion (real parameter is( /) ~ ~ ¢t~ for <1, and

numerical simulation for prz1.



Main problem of numerical simulation -
Infinite disordered sample in finite computer program.

We use infinite crystal with large disordered unite cell,
containing 100<N <4000 spins of °Li. As a result we can
apply Bloch’s theorem and receive Bloch’s eigenvalues and
eigenfunctions for matrix with dimension N, e N, and than
we can calculate observable values, applying integration
over Brillouin’s zone.

Results are stable within 2% for N,>400 spins.
Main problem in experiment.

p<10 s, and measurements at t >3 s are required, while
T,,=0.84 s. < small statistics — long measurements.

Related problem: Concentration c=10% (corresponding to
10 s1) is not small enough to neglect the correlations of

ocal fields — dependence of Vi‘.’ on r;; Is Important =

= correlation of local fields dn impurity spins.

_ ‘ 2 - _ . 2
- S-JJ{-}. ] —3 CO:’:’E.E Qﬂ ;;{.]. _ TS(S + 1) g!gidg 9 (w }
gt Jon [: ?,j/d).?) DL G ﬁdS g\ )




grq(8) = [ L™ (LE(DI{(DILTY) /T TG,
(++ 0o = Tr(++ +)/Tr(1)

H=Ho+H;+Hr+Hp, Ho=Hr+H; + Heg
Hy= ;3% o Diq(34345 — AxAg), Hip=%_ b8 A3B;

AB __ gdgﬁﬁn .
E}\.l'.] — i [1 (l ".ICG":_"I 95[1)

OGO JUIIEE) = {exp (i) dr(wl(t) - q(r)})>
=> E‘ip(——((j dr(wl(7) — a q(r})) > ) =  AWK-theory
_ exp[—2 jo dr(t—7)( A (1) - Al,q(f)):l
Al'q{r) — <mi‘{r}ma>g — Z.&=F;L ZI}' bﬁibi‘-"li{@ii{r}‘hﬁ%

(Ax(7)4y), - spin-diffusion propagator for ordered spins




(DI GG, =
- exp|:—2J.O dr (Z — Z') (A“.(T) — Arq(z')):l

Static correlation: A, (t=0) =0
The effect exists |n absence of flip-flop motion of surrounding

spins and is near 50% for nearest neighbors.

Dynamical correlation: |A,(t)] starts to increase with time, then decays,

that increases total influence of correlations of local fields on
cross-relaxation form-functions.

As a result the form function G,,(@=0) has deviations about
20% even for r at 4-th coolgzdination sphere. Deviation for form
functionat > <(0)|oc)2> can be much more significant.



Spin diffusion on ordered lattice

: G (eff) rWrx(ny_Gry)’ ny(0)25

dt >
xy (teff (t)) = <A§ (t) A\/Z>o /<(Aj)2>o
(1) = [y A Dgea(®). Tos = [ drgea(s),
0.0 =((A A ), )

Why this way is correct?

It produce NMR-form-function in satisfactory agreement with
experimental data in range g( ) >10-°g(0)

= j: dte™* <exp(J'ot dze, (r))> =
= _[_O:o dte ' exp(j; dzA,, (r))
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NMR form-function: theory vs experiment.
Gulko et al. JETP Lett. 1993, PPN 1996




Effect of correlation of local fields on cross relaxation form-tunction g;(A=0).

25 =86(A=0)=(27+2M, )M — Gaussian approximation,

M, - second moment of NMR line.

ry/(2.0136 A)[1-3c0s%, | 2i(A=0)/gs | 7,/(2.0136 A) [1-3cos0; [ gy(A=0)/ge
1414 -1 1.119 3.742 -0.1429 1.082
1414 | 1.620 3.742 0.7143 1.139
2 0 1.055 3.742 | 1.180
2.449 1/3 1.081 3.742 1.571 1.135
2.449 | 1.300 4 0 1.092
2.449 -5/3 1.140 4243 1/9 1.099
2.828 -1 1.081 4243 -1 1.100
2.828 | 1.247 4243 | 1.163
3.162 -3/5 1.064 4243 7/9 1.140
3.162 3/5 1.130 o0 1.122
3.464 2/3 1.136

3.464 -1/5 1.204




Described conception of spin dynamics Is
developed by our group for description of
spin delocalization in disordered systems.

It Is extended now to satisfactory description
of correlation functions for many problems
both for ordered and magnetically diluted
paramagnetic spin systems.



The theory had produced the mterpolating formula (by joining short and
long time asymptotic forms)

| 1 —exp(—+/Bit) [ ¥
FPoolt) = F(t) = exp(—+/ Fit) + L+ ‘
00(t) = I 1t) + ¢ (B(t +7))3/2 ( \/!u.j(f-#'r:]) |

iy 3 1/3
E=&=II+1)/[S(S+ 1] =3, ps=1r(c/%)" (][] _, Da)
3= [:’256;’243}?%(5%0?3 /2, By=B-1 /v, < 1.
o =2.00, pBr=>511, p=0.71
Fyo(t) holds to wnhm (5t)1/2 at small 3¢, and it holds to within (3¢)2 at

large Gt if exact diffusion tensor D,, is used. —_

There is no fitting parameters here.

D , are main values of the diffusion tensor.
The relation for Py,(t) does not include correlation of local field.



lg(1/Poo(t))

Preasymptotic effect - reoscillation. /k
lllustration for the case of ordered
system (simple cubic lattice, exact
solution).

1 —Pyo(t).

2 - diffusion asymptote.

3 - false asymptote.

The reoscillation was unknown to
the community both for ordered
and disordered systems before our
studies.




In order to incorporate results of numeric analysis we use

Poo()=F()G(D),

where F(t) is given by preceding formula, and correction function G(t) is

G 1)
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Asymmetry ag(t), %
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Concentration of 6Li is ¢ = 0.1006(4). Dependences for fields of strength 200, 691, and 1200 G
(from bottom to top). Corresponding x%/n = 99/64, 96/64, and 92/64; the fitted parameter values are
¢ =10.10(4)% and a, = 10.62(6)%, ¢ = 9.97(6)% and a, = 11.56(8)%, and ¢ = 10.09(6)% and a, = 10.82(5)%.



Asymmetry ag(f), %
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Concentration of 6Li is ¢ = 0.0530(2). Dependences for fields of strength 200, 691, and 1200 G (from
bottom to top). Corresponding x2/n = 74/64, 69/64, and 95/64; the fitted parameter values are ¢=5.32(2)%
and a0 = 10.05(5)%, ¢ = 5.32(2)% and a0 = 10.43(4)%, and ¢ = 5.33(2)% and a0=10.86(3)%.



Asymmetry ag(f), %
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Concentration of 6Li is ¢ = 0.0330(3). Dependences for fields of strength 200, 691, and 1200 G (from
bottom to top). Corresponding x2/n = 125/64, 55/64, and 168/64; the fitted parameter values are ¢ = 3.43(3)%
and a%=9.86(4)%, ¢ = 3.25(3)% and a® = 10.33(4)%, and ¢ = 3.40(3)% and a° = 10.29(3)%



Conclusions

1. Kinetics of delocalization of nuclear polarization in
disordered spin subsystem is studied in experiment and
theory.

2. Existence of the spin diffusion in disordered spin
subsystem is established.

3. Full numerical-analytical description of the kinetics Is
constructed.

4.
D.

0.

Pronounced
~1eld depeno

preasymptotical effects are revealed.
ence of the Kinetics Is measured.

~1eld depeno

ence of the Kinetics Is described taking into

account both static and dynamic correlations of local field.
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Thank you for the attention!



