Нейтронографические исследования фазовых превращений в аморфных фуллеритах и их взаимодействие с металлами

НИЦ "Курчатовский институт" Борисова П.А., Блантер М.С., Соменков В.А.

РНСИ-КС

27-31 октября 2014, Санкт-Петербург, Старый Петергоф

Содержание работы

1. Получение аморфных фуллеритов (механической размол)

- Измельчение в различных активаторах
 - Подбор режимов обработки

2. Ф.П. в наноразмерных углеродных системах

- Ф.П. при изменении параметров: Т , р
- (Изучение природы высокотемпературной аморфной аморфной фазы фуллеритов)

3. Взаимодействие аморфных фуллеритов с

металлами

٠

- взаимодействие с Fe (спекание, вакуумный отжиг)
- взаимодействие с Al (спекание, вакуумный отжиг)

Фуллериты

1) В зависимости от давления (р) при высоких температурах:

Рис.1. Типичные картины рентгеновской дифракции для углеродных фаз, полученных из С60 при высоком давлении [1]

[1] Ляпин А.Г. Бражкин В.В., ФТТ,2002, том 44, вып.3

Исходные кристаллы ГЦК могут испытывать превращение в орторомбическую, тетрагональную, ромбоэдрическую и др. структуры.

Получение аморфных фуллеритов

Исходный материал - порошок кристаллических фуллеритов C₆₀ (чистотой 99,5 %) производства НеоТекПродакт, полученный высокотемпературной обработкой графита с последующим выделением с помощью органических растворителей и дальнейшим хроматографическим разделением.

Механический размол

<u>Проблемы:</u> •Загрязнения в активаторе; •Подбор режима обработки.

Наличие кремнием (Si) по АЭС не более 0,31 масс. %,а в поверхностном слое по РФЭС наличие О – 16 ат.% и N - 4 ат.%.

Воздействие температуры на аморфные фуллериты

Калориметрия

Кривые ТГ (1) ДСК (2) аморфного фуллерита С₆₀, повторная кривая ДСК (3)

Изотермический отжиг

Отжиг производили в вакуумной электропечи, вакуум не хуже 10⁻⁵ мм.рт.ст.

Появление промежуточной аморфной фазы

Исследование промежуточной высокотемпературной аморфно фазы С₆₀

Сравнение Оже – спектров углеродных материалов: алмаза (1), фуллеренов C60 (2) аТ-C60 (3), HOPG (4).

EELS

EELS аморфного С₆₀ после отжига 1000 С

HRTEM - изображение

Воздействие давления и температуры на аморфные фуллериты

Термобарическое воздействие

Барическое воздействие

Давление измеряется по сдвигу линии флюоресценции рубина.

Влияние давления на аморфный фуллерит при комнатной температуре.

Типы нейтронных спектров фаз, получающихся из аморфного фуллерита при термобарическом воздействии

1-аморфный фуллерит (8 ГПа, 523К);

2-промежуточная фаза (нормальное давление,1273 К); 3-аморфный графит (8 ГПа, 973К); 4-кристаллический графит (8 ГПа, 1723 К).

Влияние термобарического воздействия на структуру промежуточной фазы

Нейтронные дифракционные спектры фаз, получающиеся при отжиге промежуточной фазы при давлении 4.5 ГПа: 1- первоначальная промежуточная фаза; 2- аморфный графит, 923К; 3- кристаллический графит, 1473К

Сравнение диаграмм превращения аморфного и кристаллического фуллерита

Работа выполнена совместно с ИФВД РАН (Бражкин В.В., Филоненко В.П.)

Экспериментальные точки: красные-аморфный фуллерит; синие - аморфный графит; зеленые-кристаллический графит; черные –промежуточная фаза.

Взаимодействие аморфных фуллеритов с металлами

• Спекание проводилось на установке Spark Plasma Sintering System (система для искрового плазменного спекания SPSS) SPSS – 625 фирмы SPS SYNTEX INC. Работа выполнена в ННГУ им. Н.И. Лобачевского, Болдин М.С.

• Вакуумный отжиг

Концентрация углерода в металлических фазах

95 % (am.) Fe

Композит	Macc.% C	
	α-фаза	Аустенит
Fe-5 ат.% аС60, спекание 1000 С	<mark>0.2</mark> феррит	-
Fe-crys.C60, спекание 1000 С	<mark>0.28</mark> мартенсит+ феррит	0.73
Fe-graph., спекание 1000 С	<mark>0.35</mark> мартенсит	1.3

Композит	Macc.% C	
	α-фаза	Аустенит
Fe-5 ат.% аС60, спекание 1000 С	<mark>0.2</mark> феррит	-
Fe-5 ат.% аС60, спекание 1150 С	<mark>0.2</mark> мартенсит	1.0
Fe-50 ат.% аС60, спекание 1000 С	<mark>0.35</mark> мартенсит	1.2

50 % (am.) Fe

5 % (am.) Fe

Взаимодействие аморфных фуллеритов с металлами

• Спекание проводилось на установке Spark Plasma Sintering System (система для искрового плазменного спекания SPSS) SPSS – 625 фирмы SPS SYNTEX INC. Работа выполнена в ННГУ им. Н.И. Лобачевского, Болдин М.С.

• Вакуумный отжиг

Влияние температуры спекания на нейтронные спектры композитов AI-C

AI-20 масс.% аморфного фуллерита С₆₀

Al-20 масс.% кристаллического фуллерита С₆₀

Спекание при 575°С

Удельная твердость

Основные результаты

- 1. Подобран режим механического размола в шаровой мельнице для получена аморфная фаза С60;
- 2. При температурной эволюции аморфных фуллеритов C60, на дифракционных спектрах видны изменения, связанные с переходом из аморфной молекулярной фазы (аморфный фуллерит) в аморфную атомарную (аморфную графитоподобную фазу), через промежуточную фазу;
- 3. Методами (нейтронной дифракцией, рамановской спектроскопией, оже-спектроскопией, HRTEM, EELS) исследована промежуточная высокотемпературная аморфная фаза C60, выявлен ее графеноподобный характер;
- 4. Показано, что при температурном (750-1350 С) воздействии, при низких (70 МПа) и высоких (4,5 и 8 ГПа) давлениях возникают промежуточные графитоподобные фазы отличные от аморфного и нанокристаллического графитов;
- 5. При взаимодействии аморфного фуллерита с железом при спекании в интервале температур 800-1200 С происходит насыщение железа углеродом с образованием неравновесных структур малоуглеродистого мартенсита с высокоуглеродистым аустенитом, отличающихся от структуры как отожженной, так и закаленной стали;
- 6. Особенность этих структур заключаются в аномальной устойчивости присутствующего в них аустенита и различием в содержании углерода в мартенсите и аустените;
- 7. При взаимодействии аморфного и кристаллического фуллерита и графита с алюминием в интервале температур 500-630 С не происходит фазовых превращений, но образуется компактный композит.

Спасибо за внимание!