Нестабильность геликоидальной спиновой структуры MnGe допированного Fe и квантовый фазовый переход.

Е.В.Алтынбаев, С.В.Григорьев

Петербургский Институт Ядерной Физики им. Б.П. Константинова Санкт-Петербургский Государственный Университет, физический факультет

B20

Кристаллическая структура B20 (пространственная группа P 2_13) вдоль оси 001 (a), (b) и 111 (c), (d). Две различные киральные конфигурации: (a), (c) правосторонняя с uSi = 0.164 и uMe = 0.862 и (b), (d) левосторонняя с uSi = 0.846 и uMe = 0.138.

Позиции Уайкофа: $R_1(u,u,u); R_2(1/2+u, 1/2-u, -u);$ $R_3(-u, 1/2+u, 1/2-u); R_4(1/2-u, -u, 1/2+u)$

V. A. Dyadkin, S. V. Grigoriev, D. Menzel, D. Chernyshov, V. Dmitriev, J. Schoenes, S. V. Maleyev, E. V. Moskvin, and H. Eckerlebe, Phys. Rev. B **84**, 014435 (2011)

Магнитная восприимчивость соединений MnGe и Mn_{0.75}Fe_{0.25}Ge

SANS-1 @FRM-II, Munich

Карты МУРН для образца Мп_{0.75}Fe_{0.25}Ge

Карты МУРН для серии образцов $Mn_{1-x}Fe_xGe, T = 10 \text{ K}$

x = 0.0x = 0.2 x = 0.25 $Q_v(nm^{-1})$ $Q_v(nm^{-1})$ $Q_v(nm^{-1})$ 0 0 1 $Q_{x}(nm^{-1})$ -2 0 1 $Q_x(nm^{-1})$ $Q_{x}(nm^{-1})$ $Q_v(nm^{-1})$ $Q_v(nm^{-1})$ x = 0.4x = 0.3 -2 $1 Q_{v}(nm^{-1})$ $Q_{\rm v}(\rm nm^{-1})$

Интенсивности малоуглового рассеяния

Экспериментальная зависимость I(Q)для образца $Mn_{0.75}Fe_{0.25}Ge$

Профиль рассеяния нейтронов на образце соединения Mn_{0.75}Fe_{0.25}Ge

Температурная эволюция магнитной структуры Mn_{0.75}Fe_{0.25}Ge

Температурная эволюция магнитной структуры MnGe и Mn_{0.75}Fe_{0.25}Ge

Температурная эволюция магнитной структуры MnGe и Mn_{0.75}Fe_{0.25}Ge

Эволюция магнитной структуры MnGe с ростом концентрации примесного металла

 $Q(nm^{-1})$

Эволюция магнитной структуры MnGe с ростом концентрации примесного металла

Эволюция магнитной структуры MnGe с ростом концентрации примесного металла

Заключение

- Геликоидальная спиновая структура нестабильна при температурах много ниже температуры фазового перехода T_N, что проявляется в присутствии в магнитной системе спиновых флуктуаций и спиновых возбуждений.
- При температурах много выше критической наблюдаются магнитные неоднородности с характерным размером порядка 1 нм.

Заключение

- Процесс дестабилизации магнитной структуры может быть простимулирован внесением дополнительного беспорядка в систему допированием соединения переходными металлами. Таким образом, неустойчивость спиновой может присутствовать и при температуре 0 К.
- При достаточной концентрации примеси в твердом растворе Mn_{1-x}Fe_xGe, а именно при x = 0.4, можно добиться понижения температуры фазового перехода T_N до значения в 0 К, то есть пронаблюдать квантовый магнитный фазовый переход.

Благодарности

А. Суханов S.-A. Siegfried A. B. Цвященко Д. Ю. Чернышев H. M. Чубова E. B. Москвин

D. Menzel A. Heinemann J. Simeoni Ch. Dewhurst A. И. Окороков B. A. Дядькин

Эволюция магнитной структуры Mn_{1-x}Fe_xGe с ростом параметра *x*

S.V. Grigoriev et al., PRL **110**, 207201 (2013)

Спасибо за внимание!