

Исследование магнитной и электронной структуры кубической фазы высокого давления TbGe_{2.85}

Цвященко А.В. (ИФВД РАН), Саламатин Д.А. (ИФВД РАН, МФТИ)

Постановка задачи

- При 5 ГПа LaGe₅ с Т_{сверхпроводность} = 7 К Fukuoka, H.; Yamanaka, S. Phys. Rev. B67, 0945011–0945015 (2003)
- Новые кубические соединения CeGe₃ и YbGe₃

M. Harada, H. Fukuoka, D. Matsumura, Kei Inumaru, J. Phys. Chem. C, 116 (3), 2153–2158 (2012)

 YbGe_{2.85}, **TbGe_{2.85}** и DyGe_{2.85}
Для YbGe_{2.85} измерена валентность ионов Yb от 2.46 до 2.89 при P = 0..8 ГПа

Tsvyashchenko A.V., Velichkov A.I., Salamatin A.V., Fomicheva L.N., Salamatin D.A., Ryasny G.K., Nikolaev A.V., Budzynski M., Sadykov R.A., Spasskiy A.V. Journal of Alloys and Compounds, 552, 190-194 (2013)

• Макро методы: магнитная восприимчивость, теплоемкость и сопротивление

Микро методы: дифракция нейтронов и возмущенные угловые корреляции (ВУК)

Метод возмущенных угловых корреляций (1)

Схема распада ¹¹¹Cd

Угловое распределение ү-излучения у2 у1

Метод возмущенных угловых корреляций (2)

Угловая корреляция (невозмущенная)

$$W(\theta) = \sum_{k} A_k P_k(\cos\theta)$$

Возмущенные угловые корреляции $W(\theta, t) = \sum_{k} G_{k}(t) A_{k} P_{k}(\cos\theta)$

Hyperfine interaction leads to nuclear spin precession.

Функция угловой анизотропии

Функция угловой анизотропии $R(t) = \frac{()}{()} ()$

4 из 11

Структура TbGe_{2.85}

Рентгенограмма TbGe_{2.85}

Кубическая фаза TbGe_{2.85} • - Tb • - Ge

Пространственная группа $Pm\overline{3}m$, a = 4.287 Å

Магнитная восприимчивость

Поведение магнитный восприимчивости в зависимости от температуры для TbGe_{2.85}

$$\label{eq:main_state} \begin{array}{l} {T_{\text{N}}} = 19 \text{ K} \\ {\mu_{\text{eff}}} = 9.65 \ {\mu_{\text{B}}}/\text{f.u.} \\ {\theta_{\text{p}}} = -46 \text{ K} \end{array}$$

Сопротивление и теплоемкость

Зависимость сопротивления от температуры для TbGe_{2.85}

$$T_{N} \neq T_{N}(P), T_{CDW} = T_{CDW}(P)$$

Зависимость теплоемкости от температуры для TbGe_{2.85}

7 из 11

Спектры анизотропии возмущенной угловой корреляции

Угловая анизотропия для TbGe_{2.85}, DyGe_{2.85} и YbGe_{2.85} при комнатной температуре

Угловая анизотропия для TbGe_{2.85} при низких температурах (22 К – 4 К) _{8 из 11}

Дифракция нейтронов на TbGe_{2.85}

Магнитная структура TbGe_{2.85}

– - Tb,● - Ge, ● - вакансии в узлах Ge

 $\mu_{Tb} = 7.8\mu_{B}$ $B_{hf}(Ge_{1}) = 2.8 T$ $B_{hf}(Ge_{2}) = 4.0 T$

10 из 11

Выводы

1) Обнаружено два фазовых перехода с образованием ВЗП при 160 К и антиферромагнитной спирали при 19 К в TbGe_{2.85}

2) Определены сверхтонкие магнитные поля и частоты при температурах ниже температуры Нееля

3) Предложена спиральная АФМ структура TbGe_{2.85}

Спасибо за внимание!