

отделение Физики твердого тела лаб. Спектроскопии твердого тела Группа эпитаксиальных диэлектриков <u>H.C.Соколова</u>

Исследование эффектов магнитной близости в гетероструктурах ферромагнетик/антиферромагнетик методами рентгеновской резонансной рефлектометрии и спектроскопии поглощения

Федоров Владимир Викторович, , С. М. Сутурин, А. Г. Банщиков, Д. А.Баранов, С. В. Гастев, К. В. Кошмак, Н. С. Соколов

vfedorov@fl.ioffe.ru

Синхротон Elettra, Триест, Италия

Синхротон Photon Factory, Цукуба, Япония

Синхротон SPring8, преф. Хёго, Япония

Обменное смещение петли гистерезиса в гетероструктурах ферромагнетик/антиферромагнетик (ФМ/АФМ)

Н

Η

 H_{FC}

FM-layer

Η_B

 H_{c}

 H_{c+}

- W.H. Meiklejohn and C.P. Bean 1956, Co/CoO
- Наблюдается при охлаждении систем
 ФМ/АФМ ниже Т_{Нееля} в приложенном
 магнитном поле
- Эффект вызван межслоевым обменным взаимодействием на интерфейсе ФМ-АФМ (из-за наличия "зафиксированных" магнитных моментов на поверхности АФМ)
- Увеличение температуры блокировки наночастиц (доп. обменная анизотропия)
- 2. "Фиксированные" магнитные слои в спиновых клапанах (ГМС, ТМС) MRAM etc.
- 3. "Магнитомягкий" подслой (SUL) в HDD с перпендикулярной анизотропией

Гетероструктуры ферромагнетик/антиферромагнетик (МЛЭ)

- Массивы ФМ частиц, выращенные на поверхности MnF₂ или NiF₂ обладают существенно (до 8 раз) меньшей коэрцитивностью, в сравнении со структурами типа ФМ/СаF₂
- Эффект наблюдается даже в случае псевдоморфного слоя MnF₂ (3 ML) / CaF₂ и отсутствует при наличии тонкой прослойки CaF₂ (2-3ML)

1.0

0.5

0.0

-0.5

-1.0

-2000

-1000

-MOKE (Arb. Un.)

5 nm Со нанесенных при 300К

Co/CaF₂ Co/NiF₂ Co/MnF₂

1000

H (Oe)

2000

Co / CaF₂ Co / MnF₂

Гетероструктуры ферромагнетик/антиферромагнетик

 Петля смещается в сторону противоположную полю заморозки (отрицательное обменное смещение)
 Эффект обменного смещения петли магнитного гистерезиса наблюдался после охлаждения гетероструктур ниже Т_{Neel(MnF2})=67.2К в поле H_{fc}=1 kOe и достигает максимума при T~40-50К
 № При охлаждении ниже Т_{Нееля} на зависимости коэрцитивного поля от температуры наблюдается излом

5 nm Со нанесенных при 300К

Co / CaF₂ Co / MnF₂ SEM images 200x200 nm $\rho_{co} = 6000 \pm 300 \ \mu m^{-2}$ $\rho_{co} = 8500 \pm 600 \ \mu m^{-2}$

Рентгеновский магнитно циркулярный дихроизм X-ray magnetic circular dichroism (XMCD)

- Переходы с подуровней расщепленных вследствие спин-орбитального взаимодействия на уровни расщепленные обменным взаимодействием"
- К Например: L-край поглощения (**2p⁶3dⁿ** → **2p⁵3dⁿ⁺¹**) (для переходных 3d-элементов и их соединений) применимо так же и к (3d;4d;4f,5d)

Дихроизм (**Δ**µ) ~ макроскопической намагниченности обусловленной конкретным химическим элементом

Рентгеновский магнитно циркулярный дихроизм X-ray magnetic circular dichroism (XMCD)

- Переходы с подуровней расщепленных вследствие спин-орбитального взаимодействия на уровни расщепленные обменным взаимодействием"
- Например: L-край поглощения (2p⁶3dⁿ → 2p⁵3dⁿ⁺¹) (для переходных 3d-элементов и их соединений) применимо так же и к (3d;4d;4f,5d)
- Циркулярно-поляризованное излучение возбуждает электроны с преимущественной ориентацией спина

Рентгеновская резонансная магнитная рефлектометрия X-ray resonant magnetic reflectivity (XRMR)

- Переходы с подуровней расщепленных вследствие спин-орбитального взаимодействия на уровни расщепленные обменным взаимодействием"
- Капример: L-край поглощения (2p⁶3dⁿ → 2p⁵3dⁿ⁺¹) (для переходных 3d-элементов и их соединений) применимо так же и к (3d;4d;4f,5d)
- Циркулярно-поляризованное излучение возбуждает электроны с преимущественной ориентацией спина
 - Моделируя кривые асимметрии отражения можно определить элементно-селективный профиль намагниченности по глубине

- Photon in photon out нет аппаратного влияния магнитного поля
- Подходит для "замурованных" интерфейсов

Поведение оптических констант Со вблизи L-края поглощения $n = 1 - \partial + i\beta$ 6

beta — поглощение (спектр поглощения XAS) delta – определяет "контрастность" границы раздела, связана с beta через преобразования Крамерса-Кронига

Точка перегиба Co - 786.6eV – максимум δ, но β мало

Результаты XAS/XMCD

- "Эффект близости (ФМ/ПМ)": магнитные моменты ионов Mn²⁺, находящиеся на интерфейсе с Co, выстраиваются антипараллельно магнитным моментам ферромагнетика
- T (300K)>>T_{Neel(MnF2)} (67.2K); с уменьшением температуры (до 22К) доля связанных моментов растет

* ??? Наведенная намагниченность в NiF₂ сонаправлена с намагниченности слоя кобальта ???

 Упорядоченные эффектом близости магнитные моменты MnF₂ (NiF₂) перемагничиваются вместе со слоем ФМ

Структура L-края поглощения MnF₂

Ион Mn²⁺ в **октаэдрическом** окружении лигандов **F**

Структура L-края поглощения MnF₂

- В спектрах XAS выражено влияние кубического кристаллического поля (стрелки)
- В спектрах XMCD не видно влияния кристаллического поля – намагниченность обусловлена интерфейсным слоем

Crystal-field atomic multiplet model (van der Laan and Kirki 1992; van der Laan and Thole 1991)

Структура L-края поглощения NiF₂

Co / NiF₂

Эффект магнитной близости в гетероструктурах Ni/MnF₂

B Ni/MnF₂ так же как и в Co/MnF₂ наблюдается наведенная намагниченность Mn²⁺ антипараллельная слою Co

Сигнал ХМСD наблюдается лишь при низких температурах

Эффект "обменного смещения" наиболее выражен в системы Ni/MnF₂

Спектральные зависимости кривых отражения

Спектральная зависимость асимметрии отражения

Наблюдаются области с различными знаками ассиметрии

- Только по картам или фиттированию можно судить о направлении намагниченности
- Можно выбрать наилучшие параметры q(A⁻¹) и E(eV) для снятия элементно селективных кривых намагничивания

Повышается достоверность фитирования

Основные результаты:

В ходе исследований методом рентгеновского циркулярного дихроизма (XMCD) в гетероструктурах Ni/MnF₂ и Co/NiF₂ был обнаружен "эффект магнитной близости" (наведенная намагниченность)

• Оценена толщина слоя с наведенной намагниченностью (0.5 ML при 300K)

Изучено проявляние "эффекта магнитной близости" для различных ориентации интерфейса ФМ/АФМ: (111),(110) и (100) для MnF₂ и (110),(100) для NiF₂, а так же в зависимости от размера кристаллографических доменов и морфологии поверхности эпитаксиальной пленки АФМ

Использование метода рентгеновской резонансной магнитной рефлектометрии (XRMR) позволило изучить проявление слабого "эффекта близости" в структурах Ni/MnF₂, а так же получить дополнительные сведения о системе Co/NiF₂

Полученные 2D-карты I(q;E) спектральных зависимостей кривых отражения I(q;E) позволяют подобрать подходящие параметры q(A⁻¹) и E(eV) для снятия элементно селективных кривых намагничивания , с большей уверенность судить о направлении намагниченности, а так же повысить достоверность фиттирования

Результаты рентгеновской резонансной магнитной рефлектометрии X-ray resonant magnetic reflectivity (XRMR)

Спасибо за внимание

vfedorov@fl.ioffe.ru

Рост гетероструктур ферромагнетик/антиферромагнетик методом молекулярно лучевой эпитаксии (МЛЭ)

- **Кремний (111), (001)** универсальная и доступная подложка, отработанная технология; CaF₂, MnF₂ и NiF₂ – возможен рост путем термического испарения.
- ✤ СаF₂ хорошо согласованны буферный слой, анизотропная поверхность (110)/Si(001), атомно-гладкая поверхность (111)/Si(111)
- ✤ MnF₂ и NiF₂ антиферромагнитные фториды T_{нееля} NiF₂ 73 К MnF₂-67К (тетрагональные); показана возможность стабилизации метастабильных ромбических фаз при эпитаксиальном росте на CaF₂/Si
 - * "Магнитомягкий" Ni (ГЦК) и "магнитожесткий" Со (ГПУ при нормальных условиях)
 - * Магнитокристаллическая анизотропия Со сильно изменяется при переходе ГЦК-ГПУ
 - * Ni обладает существенной константой магнитострикции
 - ГЦК решетки Со и Ni согласуются с CaF₂ как 3/2 (3%) *

Свободная энергия поверхности

- A_{Co(Ni)} = 2500–2900 erg/cm²
- A_{CaF₂} (111) = 450–550 erg/cm²

Островковый механизм роста Фольмера –Вебера

Оценка интенсивности сигнала дихроизма MnF₂

- Серия образцов с толщиной АФМ слоя 2.5/5/10/20 nm
- Оценим характерную глубину выхода фотоэлектронов

n_{att}= 10ML (3.1 nm)

- 59% (XMCD/L₃) теоретически дихроизм от Mn²⁺
- Пусть все упорядоченные моменты Mn²⁺ находятся в пределах первого монослоя

Рентгеновская резонансная магнитная рефлектометрия X-ray resonant magnetic reflectivity (XRMR)

- Переходы с подуровней расщепленных вследствие спин-орбитального взаимодействия на уровни расщепленные обменным взаимодействием"
- Например: L-край поглощения (2p⁶3dⁿ → 2p⁵3dⁿ⁺¹) (для переходных 3d-элементов и их соединений) применимо так же и к (3d;4d;4f,5d)
- Циркулярно-поляризованное излучение возбуждает электроны с преимущественной ориентацией спина

Измеряя резонансные кривые отражения, мы можем "включать/выключать" отдельные интерфейсы

beta — поглощение (спектр поглощения XAS) **delta** — определяет "контрастность" границы раздела, связана с beta через преобразования Крамерса-Кронига

Точка перегиба Со - 786.6eV — максимум δ, но β мало

$MnF_{2}(100) / CaF_{2}(001) / Si(001)$

- Arrays of Cobalt and Nickel epitaxial nanoparticles with crystalline structure (fcc)
- Domain-size-dependent exchange bias

MnF₂ crystalline domain size:
 250x50 nm
 20x10 nm