

ФГБУН Институт неорганической химии им. А.В. Николаева СО РАН

Исследование электронного строения фталоцианинов переходных металлов и пленочных структур на их основе

Семушкина Галина Игоревна Мазалов Лев Николаевич Гуляев Роман Владимирович Басова Тамара Валерьевна

Объекты исследования

Р. В. Гуляев, Н. А Крючкова, Л. Н. Мазалов, А. И. Боронин, Т. В. Басова, В. А. Пляшкевич. Рентгеноэлектронное 3 изучение зарядового распределения в комплексах фталоцианинов меди (II) // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. -2011. №1. –С. 1-9.

Целью работы является изучение энергетического спектра и строение B3MO и HCMO фталоцианина (H2Pc), комплексов фталоцианинов переходных металлов (**MPc**, где M – Cu, Co), гексадекафторзамещенных фталоцианинов переходных металлов (**MPcF16**, где M – Cu, Co) и пленочных структур на основе медьсодержащих фталоцианинов методами рентгеновской и рентгеноэлектронной спектроскопий, а также квантово-химическими расчетами.

Задачи

- 1. На основании полученных рентгеновских фотоэлектронных спектров валентной полосы (РФЭС), рентгеновских эмиссионных спектров (РЭС) и спектров поглощения (РСП) различных рентгеновских серий (К- и L-серии) атомов, входящих в состав изучаемых соединений, построить полные наборы рентгеновских спектров, дающие информацию о распределении парциальных плотностей в пределах ВЗМО и НСМО для H2Pc, MPc и MPcF16;
- 2. Методом рентгеновской фотоэлектронной спектроскопии (C1s-, N1s- и F1s-) определить влияние природы центрального атома и высокоотрицательных заместителей во фталоцианинах переходных металлов на зарядовое состояние атомов лигандов (C, N) и характер распределения электронной плотности в металлокомплексе;
- Провести квантово-химические расчеты электронной структуры H2Pc, комплексов MPc и MPcF16 и построить модельные спектры на их основе, сопоставить экспериментальные и теоретические спектры;

Методы исследования

Схемы рентгеновских переходов

Рентгеновский флуоресцентный спектрометр «Стеарат» Универсальный рентгеновский спектрометр «УРС-2И»

Рентгеновский фотоэлектронный спектрометр ES 300 KRATOS

Российско-германская линия в BESSY II

5

Методика квантово-химического расчета

- •Пакет квантово-химических программ Jaguar 6.5
- •Теория функционала плотности (DFT)
- •Обменно-корреляционный функционал B3LYP •Базис 6-31(TM)+G*
- •Для моделирования строения МРсF16

использовались рентгеноструктурные данные МРс с заменой Н на F

•Использование Z+1 приближения для учета рентгеновской дырки при построении РЭС и РСП спектров (для H2Pc)

Зарядовое состояние атомов азота в случае CuPc, CoPc и их фторзамещенных аналогов, а также в случае пленочных структур на основе медь-содержащих фталоцианинов, изменяется в пределах ошибки эксперимента. Энергии связи внутренних уровней атомов С, N и F для H2Pc, MPc и MPcF16

Соединение	Энергия, эВ											
		C (1s)				F(1s)						
	Сα	Сβ	Сү	Сб	Να (2)	Nα (1)	Nβ					
H2Pc	286,5	28	35,1		400,7	399,1	_					
· CuPc	286,3	28	35,1			-						
CuPc/Si	286,5	28	85,2			_						
CuPcF16	286,4	285,1	28	7,5		687,8						
CuPcF16/Si	286,4	285,2	28	7,5		687,8						
CoPc	286,2	28	84,7			_						
CoPcF16	286,3	285,4	28	7,4		687,6						

Энергии связи внутренних уровней атомов С, N и F для H2Pc, MPc и MPcF16

	Энергия, эВ											
Соединение		C (1s)				F(1s)						
	Сα	Cα Cβ Cγ		Сδ	Nα (2)	(2) Nα (1)						
H2Pc	286,5	2	85,1		400,7	399,	-					
CuPc	286,3	2	85,1			-						
CuPc/Si	286,5	23	85,2			_						
CuPcF16	286,4	285,1	28	7,5		687,8						
CuPcF16/Si	286,4	285,2	28	7,5		687,8						
CoPc	286,2	23	84,7			-						
CoPcF16	286,3	285,4	28	7,4			687,6					

Наличие атомов фтора в MPcF16 существенно влияет на зарядовое состояние атомов углерода бензольных колец CuPcF16 и CoPcF16.

Нанесение медь-содержащих фталоцианинов на кремний не приводит к изменению зарядового состояния атомов углерода, что указывает на отсутствие влияния со стороны подложки на CuPc и CuPcF16

в основном, из 2*pz*-АО углерода С_{β,γ,δ}

Г. И. Семушкина, Л. Н. Мазалов, Н. А Крючкова, А. И. Боронин, Р. В. Гуляев, Т. В. Басова, В. А. Пляшкевич, Рентгеноспектральное и квантово-химическое изучение особенностей электронной структуры комплексов фталоцианинов MPcH16 и MPcF16, где M = Cu, Co // ЖСХ. -2011, приложение, -С. 27-39.

Г.И. Семушкина, Л.Н. Мазалов, Т.В.Басова, Р.В. Гуляев, Исследование электронной структуры фталоцианина меди и его фторзамещенного аналога методом рентгеновской абсорбционной спектроскопии // Журн. Структ. Хим. -2014. -Т.2. –С. 252-260

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Изучено электронное строения H2Pc, MPc и MPcF16 и пленочных структур на основе медьсодержащих фталоцианинов с помощью методов рентгеновской и рентгеноэлектронной спектроскопии с привлечением методов квантовой химии. Определены энергии связи B3MO и HCMO, парциальный состав MO, характер химической связи между атомом металла и атомами лигандов изучаемых соединений. Рассмотрено влияние природы металлоцентра и заместителей во фталоцианиновом лиганде на строение граничных MO. Установлено, что:

- В молекуле H2Pc атомы углерода (С α , С $\beta\gamma\delta$) и азота (N α (1,2) и N α (3,4), N β) находятся в различных зарядовых состояниях. Граничные занятые МО построены из 2*pz*-AO атомов углерода (с преимущественным вкладом С $\beta\gamma\delta$), а граничные свободные МО построены из 2*pz*-AO атомов азота (N α (1,2)).
- Граничная ВЗМО комплексов CuPc и CoPc состоит из 3*dxy*-AO металла, 2*px*-, 2*py*-AO атомов углерода и 2*px*-, 2*py*-AO атомов азота.
- Введение заместителей на периферию комплекса фталоцианина приводит к тому, что атомы фтора и центральный атом металла взаимодействуют друг с другом, посредством образования делокализованных π-орбиталей с участием *pz*-орбиталей атомов углерода, принадлежащих α, β, γ, δ группам, а также *pz*-орбиталей атомов азота α и β групп.
- Граничные HCMO для CuPc, CoPc и их фторзамещенных аналогов, построены, в основном, из 3*d*-AO металла.
- В случае пленочных струтктур на основе CuPc/Si и CuPcF16/Si относительное положение парциальных вкладов 3*d*–AO меди и 2*p*–AO атомов углерода и фтора идентично порошкообразному фталоцианину, что говорит об отсутствии изменения характера связи между центральным атомом металла и атомами лиганда после напыления вещества на подложку.

2. Изучен характер распределения электронной плотности в H2Pc, MPc и MPcF16. Установлено, что замена атома металла в MPc приводит к незначительному изменению электронной плотности на атомах лигандов. Введение высокоотрицательных атомов фтора существенно изменяет зарядовое состояние периферийных атомов углерода – чем ближе атом углерода к макроциклу, тем меньше⁶ влияние, вплоть до исчезновения, в зависимости от природы центрального атома металла.

Благодарность

- Признательна коллегам по работе Коротаеву Е.В., Лаврухиной С.А., Федоренко А.Д., Перегудовой Н.Н., Гузевой Е.Л. Крючковой Н.А.
- Особую благодарность автор выражает профессору **Окотрубу А.В.** и сотрудникам берлинского центра синхротронного излучения (BESSY II) за участие и содействие в получении рентгеновских спектров поглощения

СПАСИБО ЗА ВНИМАНИЕ

Соединение	Атом серия	Е _{ср} , эВ	<i>L_{cp ,}</i> мм	n	Δ _{шк,} эВ	∆ _{сис,} эВ	Δ _{сл,} эВ	∆ _{сум,} эВ	Соединение	Атом серия	Е _{ср} , эВ	L _{ср,}	n	Δ _{шк,} эВ	∆ _{сис} , эВ	Δ _{сл} , эВ	Δ _{сум} , эВ
	Cu,L _a	916,00	130,65	1	0,11	0,05	0,04	0,20		Ni, L _α	842,7	142,01	1	0,12	0,05	0,03	0,20
CuDa	Cu, L _l	811,10	149,2	1	0,11	0,05	0,11	0,27	N/D-	Ni, L _l	737,6	162,24	1	0,09	0,05	0,09	0,23
Curc	Ν, Κα	392,93	96,48	1	0,08	0,05	0,11	0,24	NIPC	Ν, Κα	393,29	100,44	1	0,08	0,05	0,48	0,61
	C, Kα	274,91	124,32	1	0,04	0,05	0,10	0,19		C, Κα	276,92	123,4	1	0,04	0,05	0,13	0,22
	Cu,L _a	916,30	130,60	1	0,14	0,05	0,05	0,24	ZnPc	Zn, L _α	994,5	120,33	1	0,17	0,05	0,04	0,26
CDE	Ν, Κα	392,57	100,62	1	0,08	0,05	0,64	0,70		Zn, L _l	871,6	137,3	1	0,13	0,05	0,10	0,28
CuPcF ₁₆	C, Kα	277,01	123,36	1	0,04	0,05	0,03	0,12		Ν, Κα	398,00	99,39	1	0,08	0,05	0,50	0,63
	F, K _α	675,70	177,1	1	0,08	0,05	0,05	0,18		С, Кα	276,94	123,39	1	0,04	0,05	0,07	0,16
	Co,L _α	771,80	155,1	1	0,10	0,05	0,06	0,21	ZnPcF ₁₆	Zn, L_{α}	1011,5	118,3	1	0,17	0,05	0,03	0,25
CaDa	Co, L _l	675,40	177,2	1	0,08	0,05	0,13	0,26		Ν, Κα	390,46	101,18	1	0,08	0,05	0,90	1,03
CoPc	Ν, Κα	391,23	100,76	1	0,08	0,05	0,21	0,34		С, Кα	277,0	123,37	1	0,04	0,05	0,09	0,18
CuPc CuPcF ₁₆ CoPc	C, Kα	279,94	140,04	1	0,04	0,05	0,08	0,17		F, K _α	674,9	177,32	1	0,08	0,05	0,02	0,15
	Co,L _a	770,3	155,36	1	0,10	0,05	0,09	0,24		Fe, L_{α}	702,9	170,25	1	0,08	0,05	0,04	0,17
	Co, L _l	674,7	177,37	1	0,08	0,05	0,04	0,17	FePc	Fe, L _l	614,7	194,68	1	0,06	0,05	0,14	0,25
CoPcF ₁₆	Ν, Κα	394,02	100,24	1	0,08	0,05	0,07	0,20		Ν, Κα	392,83	100,78	1	0,08	0,05	0,63	0,76
	C, Kα	277,38	140,18	1	0,04	0,05	0,06	0,15		C , Kα	277,55	123,12	1	0,04	0,05	0,07	0,16
	F, K _α	675,8	177,08	1	0,08 0,05 0,08 0,21		N, K _α	395,29	127,00	1	0,06	0,05	0,09	0,20			
				-	H ₂ Pc	C, Kα	276,45	125,39	1	0,04	0,05	0,05	0,14				

Таблица. Погрешности определения энергетического положения рентгеновских линий фталоцианинов переходных металлов

Таблица. Длины (Å) и углы (градус) связи атомов, образующих комплексы CuPc, CoPc, ZnPc, NiPc, FePc, CuPcF16, CoPcF16, ZnPcF16 и Н2Pc полученные экспериментально и рассчитанные методом функционала плотности

Связь, (Å)	H ₂ Pc теор. (D2h)	CuPc, эксп. [151]	CuPc, теор. (D2h)	CuPcF ₁₆ Teop. (D4h)	СоРс эксп. [152]	СоРс теор. (D2h)	CoPcF ₁₆ Teop. (D4h)	ZnРс эксп. [153]	ZnPc teop. (D2h)	ZnPcF ₁₆ Teop. (D4h)	NiPc эксп. [154]	NiPc теор. (D2h)	FePc эксп. [153]	FePc теор. (D2h)
M-N _{α} (1), M-N α (2)		2.062	2.000	2.007	1 080	1.976	1 099	1.980	1.001	2 014	1.012	2.000	1.927	1.900
M-N _{α} (3), M-N α (4)	_	1.972	2.000	2.006	1.980		1.988	1.978	1.991	2.014	1.915	2.000		
$N_{\alpha}(1)-C_{\alpha}(1), N_{\alpha}(2)-C_{\alpha}(2)$	1 366	1.374	1 361	1 361	1.382	1 381	1.394 -	1.366	1.366	1.382	1.385	1.376	1 378	1 390
$N_{\alpha}(1)-C_{\alpha}(8), N_{\alpha}(2)-C_{\alpha}(7)$	1.500	1.374	1.501	1.301	1.377	1.561		1.372				1.370	1.570	1.570
$N_{\beta}(1)$ - $C_{\alpha}(1)$, Nβ(2)- Cα(2)	1.336	1.347	1.348	1 334	1.316	1.334	1.335	1.334	1.332	1.335	1.327	1.338	1.322	1.321
N _β (1)-C _α (4), Nβ(2)- Cα(3)	1.318	1.322	1.316	1.554				1.332						
$C_{\alpha}(1)$ - $C\beta(1)$, $C\alpha(2)$ - $C\beta(2)$	1.468	1.464	1.461					1.450						
$C_{\alpha}(3)$ - C $\beta(3)$, C $\alpha(4)$ - C $\beta(4)$	1.454	1.480	1.479	1.478	1.451	1.466	1.461	1.452	1.475	1.473	1.462	1.474	1.450	1.464
$C_{\beta}(1)-C_{\beta}(8), C_{\beta}(2)-C_{\beta}(7)$	1.405	1.413	1.413	1 414	1 202	1 410	1.422	1.398	1.405	1.418	1.399	1.413	1.392	1.401
$C_{\beta}(3)-C_{\beta}(5), C_{\beta}(4)-C_{\beta}(6)$	1.414	1.403	1.403	1.414	1.565	1.410		1.403						
$C_{\beta}(1)$ - Cγ(1), Cβ(2)- Cγ(2)	1.394	1.391	1.392	1 383	1 385	1 300	1 387	1.393	1 385	1 386	1 200	1 200	1 205	1 290
$C_{\beta}(3)$ - $C\gamma(3)$, $C\beta(4)$ - $C\gamma(4)$	1.399	1.388	1.388	1.365	1.565	1.390	1.307	1.392	1.365	1.580	1.399	1.369	1.395	1.369
$C_{\gamma}(1)$ - $C_{\delta}(1)$, $C\gamma(2)$ - $C_{\delta}(2)$	1.398	1.405	1.405	1 407	1 378	1.405	1.405	1.388	1.409	1.404	1.395	1.407	1.390	1.407
$C_{\gamma}(3)$ - $C_{\delta}(3)$, $C\gamma(4)$ - $C_{\delta}(4)$	1.392	1.406	1.406	1.407	1.378			1.391						

Связь, (Å) $C_{\delta}(1)-C_{\delta}(8), C_{\delta}(2)-C_{\delta}(7),$ $C_{\delta}(6)-C_{\delta}(4), C_{\delta}(3)-C_{\delta}(5)$	H ₂ Pc Teop. (D2h) 1.407 1.411	СиРс, эксп. [151] 1.403 1.400	CuPc, reop. (D2h) 1.403 1.400	CuPcF ₁₆ reop. (D4h) 1.383	СоРс эксп. [152] 1.386	СоРс теор. (D2h) 1.401	CoPcF ₁₆ reop. (D4h) 1.392	ZnРс эксп. [153] 1.398 1.395	ZnPc Teop (D2h)	ZnPcF ₁₆ reop. (D4h) 1.376	NiPc эксп. [154] 1.399	NiPc теор. (D2h) 1.400	FePc эксп. [153] 1.394	FePc теор. (D2h) 1.400
$C_{\gamma}(1)$ - $F_{\alpha}(1), C_{\gamma}(2)$ - $F_{\alpha}(2)$	-	-	-	1.337	-	-	1.369	-	-	1.387	-	-	-	-
$C_{\delta}(1)$ - $F_{\beta}(1), C_{\delta}(2)$ - $F_{\beta}(2)$	-	-	-	1.346	-	-	1.372	-	-	1.414	-	-	-	-
Углы, градус														
$N_{\alpha}(1) MN_{\alpha}(2), N_{\alpha}(3) MN_{\alpha}(4)$		180.00	180.00	180.00	180	180.00	180.00	180.00	180.00	180.00	180.00	180.00	180.00	180.00
$N_{\alpha}(1) MN_{\alpha}(3), N_{\alpha}(2) MN_{\alpha}(4)$		89.69	89.89	90.00	89.39	90.02	90.00	88.97	90.00	90.00	-	89.82	90.00	89.96
$N_{\alpha}(1) MN_{\alpha}(4), N_{\alpha}(2) MN_{\alpha}(3)$		90.31	90.10	90.00	90.61	89.97	90.00	91.03				90.18		90.00
$ \frac{MN_{\alpha}(1)C_{\alpha}(1)}{MN_{\alpha}(2)C_{\alpha}(2)} $		119.95	125.05	124.80	127.15	125.60	125.55	124.49	125.22	125.11	126.7	124.96	126.3	127.05
$\frac{\text{MN}_{\alpha}(3)\text{C}_{\alpha}(6)}{\text{MN}_{\alpha}(4)\text{C}_{\alpha}(5)}$		125.13	125.25	124.80	126.01	125.65	125.55	126.40				125.27	120.3	126.97
$\begin{array}{l} \mathrm{C}_{\alpha}(1)\mathrm{N}_{\alpha}(1)\mathrm{C}_{\alpha}(8),\\ \mathrm{C}_{\alpha}(2)\mathrm{N}_{\alpha}(2)\mathrm{C}_{\alpha}(7) \end{array}$	107.07	107.62	100.7		106.84	109 75	108.00	109.22			106.8	100.76	107.20	105.08
$\begin{array}{c} \mathrm{C}_{\alpha}(3)\mathrm{N}_{\alpha}(3)\mathrm{C}_{\alpha}(6),\\ \mathrm{C}_{\alpha}(4)\mathrm{N}_{\alpha}(4)\mathrm{C}_{\alpha}(5) \end{array}$	112.54	109.02	109.7	110.56	106.84	108.75	108.90	109.00	109.50	109.78		109.70	107.50	105.98
$\begin{array}{c} \mathrm{C}_{\alpha}(1)\mathrm{N}_{\beta}(1)\mathrm{C}_{\alpha}(4),\\ \mathrm{C}_{\alpha}(2)\mathrm{N}_{\beta}(2)\mathrm{C}_{\alpha}(3) \end{array}$	124.16	123.21	124.21	124.22	121.63	123.01	102 72	123.94	122.04	125 49	120.1	124.39	121.7	121.10
$ \begin{array}{c} C_{\alpha}(5)N_{\beta}(3)C_{\alpha}(7),\\ C_{\alpha}(6)N_{\beta}(4)C_{\alpha}(8) \end{array} $	124.10	123.55	124.33	124.23	121.93	123.05	123.73	123.03	123.94	125.48	120.1	123.97	121.7	121.18

Привязка спектров неэквивалентных групп атомов к единой шкале энергий связи

Интерпретация спектров поглощения углерода и азота незамещенного и гексадекафторзамещенного фталоцианина меди методом конечных разностей

