

Реактор ПИК и Европейский нейтронный ландшафт

А.И. Иоффе

Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Garching, Germany

РНСИКС, 27-31 октября 2014, Санкт-Петербург

NEUTRON SOURCES IN THE WORLD 2014

50 reactors and 8 spallation sources

Main continuos source in Europe:

ILL - Grenoble

FRM-II - Munich

Orphée-LLB – Saclay

SINQ - PSI, Switzerland

BERII – Berlin

BNC - Budapest

IRI Delft – The Netherlands

NPL – Prague - Czech Republic

WWRM - Gatchina, Russia

+PIK (Gatchina, Russia)

World:

HFIR, NIST, ANSTO, Chalk River, China, Hanaro, Egypt, Serpong, Marocco, ...

Spallation sources (Europe):

ISIS – Oxfordshire, UK JINR – Dubna, Russia

+ESS - 2019 Sweden

World:

SNS – Oak Ridge – USA (2006) J-PARC – Japan (2008) LANSCE – Los Alamos, USA

+ C-SNS - China (?)

NEUTRON WORLD MAP

NEUTRON EUROPE MAP

NEUTRON EUROPE MAP

Balance:

shut down of older sources in favor of modern highest performance facilities

European Landscape in 2020th:

- + first neutron at ESS
- + PIK in Russia
- BER 2 (HZB, Berlin),
- Orphée (LLB) ?,
- PSI
- ILL (2013-2023; then till when 203?)

R II: perational in POF III I 2020

Neutron Sources: fluxes

But the real gain comes from the technical progresses on the neutron instruments!

Jülich Centre for Neutron Science

European neutron instrument days =

= (facility operating days) x (number of operational instruments).

In practice days delivered to users will be 80-85% of this value.

Jülich Centre for Neutron Science

European neutron instrument days =

= (facility operating days) x (number of operational instruments).

In practice days delivered to users will be 80-85% of this value.

Strategy Paper on Neutron Research in Germany: 2015–2045

Developed last year; got full support of international reviewers in April (POF-III), is a basis for the long-term planning in BMBF

German Neutron Strategy Overview

- Germany will continue to operate FRM-II
 and a new national spallation neutron source is an option
- ESS operation will start at the end of the decade
- HFR @ ILL Grenoble will be shut down after 2030
- PIK is an excellent chance to secure the access of the german user community to a high power neutron reactor

Why pulsed (spallation) sources?

- Politics (ecology)
- Larger neutron output/MW
- Very significant gain in the instrumental intensity

Monochromatic and TOF instruments

Time-of-flight (TOF) setup

Chopper slits collimation sample beamstop

Simultaneous coverage of a wide Q-range, however low intensity

Monochromatic beam setup

Monochromator

Stepwise coverage of Q-range, however high intensity

Monochromatic and TOF instruments

Time-of-flight (TOF) setup

Simultaneous coverage of a wide Q-range, but lower intensity:

Monochromatic beam setup

Monochromator

Stepwise coverage of Q-range, but higher intensity

$$\Phi_{pulse} = \frac{\tau}{T} \overline{\Phi} \approx \frac{1}{25} \overline{\Phi}$$

$$Q = \frac{4\pi}{\lambda} \sin \theta$$

TOF: wide simultaneous Q-range

Monochromatic: stepwise coverage

Monochromatic and TOF instruments

Time-of-flight (TOF) setup

Simultaneous coverage of a wide Q-range, but lower intensity:

Monochromatic beam setup

Stepwise coverage of Q-range, but higher intensity

TOF at reactor instruments: significant intensity losses that wipes out the advantage of simultaneous coverage of a wide Qrange.

⇒ Even.

Monochromatic instruments at reactors vs. TOF at pulsed sources.

Pulsed sources: the same average flux as at reactor source, but in peak structure

$$\overline{\Phi}_{PS} \approx \overline{\Phi}_{reactor}$$

$$\Phi_{reactor}^{pulsed} = \frac{\tau}{T} \overline{\Phi}_{reactor} > \overline{\Phi}_{reactor}$$

Pulsed sources are gaining vs. chopper pulses from reactor beams.

ESS vs. other spallation sources

 Comparison of TOF and Mono instruments at reactor and SS.

Source: ESS

What ESS can give us?

A TOF instrument at ILL vs. a TOF instrument at ESS

If we will use the full ESS pulse, then:

$$\bar{\Phi}_{ILL} \approx \bar{\Phi}_{ESS}$$
 $\Phi_{D17} = \frac{\tau}{T} \Phi_{ESS \, Refl} \approx \frac{1}{25} \cdot \Phi_{ESS \, Refl}$

$$\tau_{ESS} = 2.8ms$$
 $T_{ESS} = 72ms$

Gain against ILL is about 25!
Taking into account more modern neutron optics – 30-40!

Another gain: flat moderators

a new moderator concept (F.Mezei, K.Batkov, A. Atynkbaev)

 At 3 cm 80 % of total neutrons emitted compared to maximum

The gain factor is 3-5 for cold neutrons and 1.5-2 for thermal neutrons for instruments that using focusing optics (small samples)

What ESS can give us?

A TOF instrument at ILL vs. a TOF instrument at ESS

If we will use the full ESS pulse, then:

$$\overline{\Phi}_{ILL} \approx \overline{\Phi}_{ESS}$$
 $\Phi_{D17} = \frac{\tau}{T} \Phi_{ESS \, Refl} \approx \frac{1}{25} \cdot \Phi_{ESS \, Refl}$

$$\tau_{ESS} = 2.8ms$$
 $T_{ESS} = 72ms$

Gain against ILL is about 25!
Taking into account more modern neutron optics – 30-40!

Flat moderator – another factor 2.5-3. thus, for instruments using focusing optics the gain vs. ILL will be about 100!

Thus ESS will provide a huge flux gain w.r.t. most intense reactor sources. Will this result in quick and therefore a significantly larger number of experiments?

Example: a high-intensity reflectometer at the ESS

Kinetics: YES

Standard reflectometry: **NO**Changes of temperature take tens of min

Real gain is a possibility of studies of much smaller effects than today (very thin layers, low contrast, small samples, ...).

But total experiment duration will be about 1 week as today

ILL – about 40 instruments, MLZ– about 35 instruments

- when they will be phased out much less instruments than today
- Inevitable loss of European user base.
- Compact neutron sources (10 to be build in Japan similar situation)

ILL – about 40 instruments, MLZ– about 35 instruments

- when they will be phased out much less instruments than today
- Inevitable loss of European user base.
- Compact neutron sources (10 to be build in Japan similar situation)
- > PIK!

What PIK should be to play this important role? (biased point of view)

- complimentary to ESS and able to take over a large user flow
- Outstanding instrumentation:
 - Instruments answering main trends in science; the science cases for ESS shows what users are expecting.
 - > PIK instruments better than at ILL & MLZ, use experience from the ESS (cf. JCNS workshop in Tutzing)
 - Much better use of reactor neutrons: better moderators, delivery systems, less background, larger solid angle, relaxing resolution till maximally possible.
 - Implementation of modern neutron technologies in neutron optics, detection, polarization analysis for better usage of scattered neutrons.
- modern methods of neutron data treatment, including visualization, graphic user interfaces, common data format and data treatment software
- Modern sample environment reliable and on the brink of possible.

What PIK should be to play this important role? (biased point of view)

- complimentary to ESS and able to take over a large user flow
- Outstanding instrumentation
- Multidisciplinary, attraction of own non-neutron users. Building complementarity to synchrotron facilities, up to common user program. Not a competition, but cooperation!
- Less accent on short-term local interests all user facilities went through this and the outcome is clear: 20-30% is a proper ratio to account for them.
- friendly user policy
- Inclusion of young scientists: they are the future of facility

A great interest in Europe: practically every serious scientific leader understands a great value of PIK to keep the neutron community (and therefore the neutron sources) alive in a long-term.

THANK YOU FOR ATTENTION!

